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No exciting books suit feverish patients;

Unexciting books make one drowsy.

∴ No books suit feverish patients, except such as make one

drowsy.

— Lewis Carroll

This appendix1 reveals a bit of the logical infrastructure needed for

mathematics—just enough, we hope, to get you going in reading and

writing proofs. It discusses what is meant by combinations of state-

ments formed with such words as ‘or’ and ‘if…then’, and how the quan-

tifying phrases ‘for every’ and ‘there exists’ are applied. It points out

some of the most common patterns of mathematical proof—but your

best guide to what patterns are considered legitimate are the actual

proofs throughout this book. What it includes is treated for the most

part informally and descriptively.

One of the difficulties with learning logic is that logic ought to pre-

cede everything else in mathematics that uses it, yet, without any other

mathematics to treat, logic is wholly abstract. Accordingly, to explain

logical ideas we shall often have to talk about mathematical sets, num-

bers, functions, etc., along with a few examples from our everyday lan-

guage about the real world. For the essentials about sets and functions,

see Appendix A and Appendix B.

In a few instances—for example, the more generous meanings in

logic of ‘or’ and ‘there exists’—logical language differs a bit from every-

day usage. Otherwise, logic just makes explicit and crisp those patterns

of deductive reasoning used by careful speakers and writers.

1Copyright ©2007 Murray Eisenberg. All Rights Reserved
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L.1 The logic of solving equations

What is really going on, from a logical viewpoint, when you carry out

familiar algebraic steps to solve an algebraic equation (or an inequality

or a system of equations or of inequalities)?

Example L.1.1. Consider the quadratic equation x2 + x − 6 = 0. To

solve this, you would write something like this:

x2 + x − 6 = 0

(x − 2) (x + 3) = 0

x − 2 = 0, x + 3 = 0

x = 2, x = −3

and then write the solution as:

x = 2,−3

Several questions arise. First, what do the commas mean in the expres-

sions ‘x = 2, x = −3’ and ‘x = 2,−3’. We understand the commas to

mean “or”, so that both expressions mean ‘x = 2 or x = −3’: there are

two values of x that are solutions of the original equation.

Second, what is the connection between successive lines in the write-

up? Presumably it is not just that an x satisfying the equation(s) in one

line also satisfies the equation in the succeeding line, but also that an

x satisfying the equation(s) in the succeeding line also satisfies the

equation(s) in its preceding line. For example, it is not just that if a

value of x satisfies x2 + x − 6 = 0, then the same value of x satisfies

(x−2) (x+3) = 0; but also, if a value of x satisfies (x−2) (x+3) = 0,

then the same value of x satisfies x2 + x − 6 = 0. In other words, you

can not only “go” from one line to the next, but you can also “go” from

that next line to the one preceding it: the steps are reversible.

Put more tersely, an x satisfies the equation(s) in one line if and only

if it satisfies the equation(s) in the succeeding line: the assertions in the

one line and the succeeding line are logically equivalent to one another.

Such logical equivalence is indicated by the symbol ⇐⇒, which may be

read as “if and only if”. Thus a more careful write-up of the solution

would be:

x2 + x − 6 = 0

⇐⇒ (x − 2) (x + 3) = 0

⇐⇒ x − 2 = 0 or x + 3 = 0

⇐⇒ x = 2 or x = −3
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By the way, sometimes the two letters in ‘or’ are more than we want

to write, and then we use the logical symbol ∨ to mean or. Thus, as we

found above:

x2 + x − 6 = 0 ⇐⇒ x = 2∨ x = −3

How would you answer the question of what the solution to the

original quadratic equation is? You might write

x = 2,−3,

just as in the original write-up, and say, “The solutions are 2 and −3.

Yes, you would doubtless use the word ‘and’, but surely you would not

intend to suggest that a particular solution has both the values 2 and

−3 at the same time! It is still a matter of ‘or’ rather than ‘and’.

You can avoid the ‘and’/‘or’ confusion in such situations by using

an expression such as ‘x = 2 or x = −3’ explicitly involving ‘or’. You

can also avoid the confusion by giving the solution set of the equation—

the set of all solutions. In the example, the two numbers 2 and −3 are

solutions, and no other number is a solution. Thus the solution set S
is given by

S = {2,−3},

and this means exactly

S = {x : x = 2 or x = −3 }.

Thus a number x belongs to the set S exactly when x = 2 or x = −3;

more briefly:

x ∈ S ⇐⇒ (x = 2 or x = −3)

Unless you are careful about the logic of what you are doing, you

may get results that are not only confusing, but actually wrong. Look

at the next example.

Example L.1.2. Consider the algebraic equation x +
√
x2 − 5 = 1. To

solve this, you might write

x +
√

x2 − 5 = 1
√

x2 − 5 = −x + 1
(
√

x2 − 5
)2
= (−x + 1)2

x2 − 5 = x2 − 2x + 1

2x = 6

x = 3
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and thereby conclude that the given equation has unique solution 3. But

you would be wrong! In fact, 3 does not satisfy the original equation:

3+
√

32 − 5 = 3+ 2 = 5 ≠ 1

So what went wrong? There were no slip-ups in the algebraic manip-

ulations, and each step in the write-up from one equation to the next

is correct. What is wrong is that one of the steps is not reversible: the

step from
√
x2 − 5 = −x + 1 to

(√
x2 − 5

)2
= (−x + 1)2. (Every other

step is reversible.) In general, it is correct that if a = b, then a2 = b2.

However, it is not in general correct that if a2 = b2, then a = b. All you

can conclude from a2 = b2 is that a = b or a = −b. In the situation

with our equation, take a =
√
x2 − 5 and b = −x + 1 and note that

a2 = x2 − 5 (because
(√
p
)2 = p for every positive number p).

In view of the preceding analysis, a careful write-up of the solution

would be:

x +
√

x2 − 5 = 1

⇐⇒
√

x2 − 5 = −x + 1

=⇒
(
√

x2 − 5
)2
= (−x + 1)2 (not ⇐⇒!)

⇐⇒ x2 − 5 = x2 − 2x + 1

⇐⇒ 2x = 6

⇐⇒ x = 3

There is one step having just an if…, then form—implication—as indi-

cated by the symbol =⇒ ; since that step is not reversible, the implica-

tion =⇒ cannot be replaced with a logical equivalence ⇐⇒. Hence all

that the write-up tells us is: If x satisfies the original equation, then x
must have value 3. But, as we checked, 3 is not a solution of the origi-

nal equation; 3 is, as some people refer to it, an “extraneous” solution,

which was obtained by squaring the square-root.

The given equation has no solutions whatsoever. Then its solution

set S is the set to which no number belongs:

S = {}

This set with no elements is the empty set, denoted by ∅.

Strictly speaking, none of the logical equivalences or implications

used above make sense, because they are not qualified in any way as

to the domain of values of their variable x for which they are allegedly

true. Thus, in Example L.1.1 about solving the equation x2+x−6 = 0,

probably the intent was to find the real numbers x that are solutions. In
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that case, the write-up of the solution at the bottom of page L2, should

really look like this:

(∀x ∈ R)
(

x2 + x − 6 = 0 ⇐⇒ (x − 2) (x + 3) = 0

⇐⇒ x − 2 = 0 or x + 3 = 0

⇐⇒ x = 2 or x = −3
)

Here the initial string (∀x ∈ R) is read as “For all x in R”, or more

verbosely as “For all real numbers x”. Here R stands for the set of all

real numbers. And then the intention is that each of the equivalences

is true for every real number.

As it so happens, the solutions of the equation x2 − x − 6 are

integers—elements of the set Z of all integers—so it would be equally

correct to write:

(∀x ∈ Z)
(

x2 + x − 6 = 0 ⇐⇒ (x − 2) (x + 3) = 0

⇐⇒ x − 2 = 0 or x + 3 = 0

⇐⇒ x = 2 or x = −3
)

Of course until you actually work through the steps of solving the equa-

tion, you would not necessarily know that the solutions were actually

integers. So it would be safer to work with R instead of with Z.

But for some other equations, not even R might be a large enough

set of numbers: you might need, say, the set C of all complex numbers.

For example:

(∀x ∈ C)
(

x2 + 9 = 0 ⇐⇒ (x − 3i) (x + 3i) = 0

⇐⇒ x − 3i = 0 or x − (−3i) = 0

⇐⇒ x = 3i or x = −3i
)

Here i is the complex number having the property that i2 = −1. Thus

the solution set here is {3i,−3i}.
Exercise L.1.3. Suppose, nonetheless, you tried to work out a solution

of x2 + 9 = 0 using the set R of real numbers:

(∀x ∈ R)
(

x2 + 9 = 0 ⇐⇒ x . . . )

What might you write as the end, where the dots are? (This is a question

you might need to ponder for a while!) And what is the solution set—as

a subset of R?

The equation x2 + x − 6 = 0 has at least one solution (in fact, it

has precisely two solutions) that are real numbers. To indicate it has

at least one, we write:

(∃x ∈ R)(x2 + x − 6 = 0)
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The string (∃x ∈ R) is read as “There exists “x inR” or, more verbosely,

“There exists a real number x”.

The logical connectives or, implies (=⇒), and if and only if (⇐⇒)

already used above, as well as the connectives not (¬) and and (&), can

help solve inequalities, too.

Example L.1.4. The problem we pose is to solve |2x − 1| ≥ 3. But it is

simpler to solve the inequality |2x − 1| < 3:

|2x − 1| < 3 ⇐⇒ −3 < 2x − 1 < 3

⇐⇒ −2 < 2x < 4

⇐⇒ −1 < x < 2.

In other words,

|2x − 1| < 3 ⇐⇒ −1 < x & x < 2.

Then

|2x − 1| ≥ 3 ⇐⇒ ¬(|2x − 1| < 3)

⇐⇒ ¬(−1 < x & x < 2)

⇐⇒
(

¬(−1 < x)
)

or
(

¬(x < 2)
)

⇐⇒ x ≤ −1 or x ≥ 2

The next-to-last equivalence above used one of De Morgan’s Laws of

logic (Tautologies L.4.10), namely, ¬(P & Q) ⇐⇒
(

(¬P) or (¬Q)
)

.

In terms of sets, the solution set T of |2x − 1| < 3 is

T = (−1,2) = {x : −1 < x & x < 2 }
= {x : −1 < x } ∩ {x : x < 2 } = (−1,∞)∩ (−∞,2)

whereas the solution set S of the original inequality |2x − 1| ≥ 3, we

found, is

S = {x : x ≤ −1 or x ≥ 2 } = {x : x ≤ −1 } ∪ {x : x ≥ 2 }
= (−∞,−1]∪ [2,∞).

The logical equivalence |2x − 1| ≥ 3 ⇐⇒ ¬(|2x − 1| < 3) may be

expressed in terms of the solution sets S and T of |2x − 1| ≥ 3 and

|2x − 1| < 3, respectively, as

S = R \ T .

In other words, the subset S of the set R of all real numbers is the

complement in R of its subset T . Thus

S = R \ ( (−1,∞)∩ (−∞,2) ) .
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(Notice the different meanings of parentheses there: the inside ones

are used to denote open rays, whereas the outer ones are punctuation.)

One of De Morgan’s Laws about sets (Proposition A.1.4) implies that

S = R \ ( (−1,∞)∩ (−∞,2) ) = (R \ (−1,∞) )∪ (R \ (−∞,2) )
= (−∞,−1]∪ [2,∞).

Of course, that is the same solution set obtained before.

Exercises L.1.5. Give careful write-ups, including appropriate use of

‘or’, &, =⇒, and ⇐⇒, for solving the equation(s) or inequality. Do this

both without using, and with using, the ∀ qualification. Then tell what

the solution set is, using the set-builder notation { . . . }.

(1) x3 − 2x2 − 5x + 6 = 0

(2) (x − 1)(x + 2) < 0

(3) (x − 1)2 < 4

(4) x + 4 =
√

2x2 + 14x

(5)






x(x2 +y2 − 1) = 0,

y(x2 +y2 − 1) = 0

Exercise L.1.6. The equation x +
√
x2 − 5 = 1 in Example L.1.2 has no

solutions whatsoever, and we indicated this by writing that its solution

set is the empty set∅. How, without referring to the solution set, might

you indicate that the equation has no solutions? (Hint: Recall that the

notation ∃may be used to indicate existence of an equation’s solution.)

Exercise L.1.7. Let f(x) = 5x4 − x5. Determine:

(a) the set {x : f ′(x) = 0 } of all critical points of f ;

(b) the set {x : f ′(x) > 0 } on which f is increasing and the set

{x : f ′(x) < 0 } on which f is decreasing;

(c) the set {x : f ′′(x) > 0 } on which f is concave upward and the

set {x : f ′′(x) < 0 } on which f is concave downward.

Exercise L.1.8. For which values of x is
√

x/(1− x) defined as a real

number? In other words, in Calculus I terms, what is the domain of
√

x/(1− x)?
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L.2 Formulas and Statements

Section L.1 introduced informally the logical symbols ∨, &, ⇐⇒, and

=⇒, which connect statements about mathematical objects. In order

to understand just how these logical symbols behave, you need first

to understand how to form such statements and objects. And to un-

derstand that involves looking at a rather "formal" description of the

language of logic and mathematics.

To begin, we need symbols. Our symbols will include:

• letters, such as x, C , N, andA (to make things more readable and

to prevent us from running out of letters when many are involved,

we allow letters to be ornamented in various ways, such as x′, b′′,
A0, y99, N∗, ~v);

• the logical connectives ¬ (negation), ∨ (disjunction), ∧ (conjunc-

tion), =⇒ (implication), and ⇐⇒ (equivalence);

• the logical quantifiers∀ (universal quantifier), ∃ (existential quan-

tifier), and

ι

(descriptor);

• the set-theoretic signs = (equality) and ∈ (elementhood)—the lat-

ter not to be confused with the Greek epsilon, ε; and

• parentheses, as punctuation marks.

In actual mathematical writing, we often use ordinary words and whole

phrases instead of the connectives, quantifiers, and other symbols.

Such words and phrases, used as shown in Table L.1 on page L9, sug-

gest the meanings we intend for the corresponding symbols. Here are

some mnemonics for the logical connectives and quantifiers:

• The symbol ¬ is reminiscent of a negative sign; it means not.

• The symbol & is the usual ampersand; it means and.

• The symbol =⇒ in P =⇒ Q goes from P to Q; it means if P , then

Q.

• The symbol ⇐⇒ in P ⇐⇒ Q goes from P to Q as well as from Q
back to P ; it means P if and only if Q.

• The symbol∀ resembles an upside-down letter A; it means for all.

• The symbol ∃ resembles a backwards letter E; it means there exists.

(The descriptor

ι

is an upside-down Greek letter iota, ι.) When we use

such words as part of English sentences with embedded mathematical
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Table L.1: Meanings of logical symbols.

Symbolism Meanings

¬(P) not P

it is not the case that P

(P) & (Q) P and Q

both P and Q

P but Q

P yet Q

P whereas Q

(P)∨ (Q) P or Q

P and/or Q

either P or Q or both P and Q

(P) =⇒ (Q) P implies Q

if P , then Q

P only if Q

Q if P

Q provided that P

P is sufficient for Q

Q is necessary for P

Q because P

Q since P

P whence Q

(P)⇐⇒ (Q) P if and only if Q

P iff Q

P is (logically) equivalent to Q

P is necessary and sufficient for Q

P precisely when Q

(∀x)(P) for all x, P

for every x, P

for each x, P

for arbitrary x, P

for any x, P

(∃x)(P) there exists x such that P

there is an x such that P

for some x, P

( ιx)(P) the x such that P

the unique x such that P

x = y x equals y

x ∈ Y x is an element of Y

x is a member of Y

x belongs to Y

x is in Y
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symbolism, we shall also use commas and other punctuation besides

parentheses.

Writing one or more of such symbols in succession gives us a string.

For example, ‘x’, ‘=’, and ‘x ∈ A’ are strings.2

A letter x is said to be bound in a string S in case any one of the

strings (∀x), (∃x), ( ιx) occurs as part of S.3 Otherwise, the letter is

said to be free in the string. In particular, the letter is free in the string

if it does not occur there at all. Here are two examples, which use the

notations N for the set {0,1,2, . . . } of all natural numbers and Z for the

set {. . . ,−2,−1,0,1,2,3, . . . } of all integers. First, n is bound in

(∀n)(n ∈ N =⇒ 2n > n)

(which means that the double of each natural number is greater than

the number itself). Second, n is bound in

( ιn)(n ∈ Z & 2n = n)

(which represents the one and only natural number whose double is

itself, namely, 0). However, n is free in each of the three strings:

2n > n, n ∈ N =⇒ 2n > n, k ∈ N =⇒ 2k > k

When a particular occurrence of a letter x is bound in a string S
because that occurrence is within part of S that has one of the three

form (∀x)(P), (∃x)(P), ( ιx)(P), then that occurrence of x is said to

be within the scope of that quantifier ∀, ∃, or

ι

.

Most strings we could write would be utter nonsense—the sort of

thing a roomful of monkeys typing at random would produce before

they ever happened to get around to Shakespeare. The strings that are

to be regarded as meaningful are terms and formulas. Informally, a

term denotes an object that the logical language talks about, such as:

the natural number 0, the set of those x for which x ≠ x, the set of

natural numbers, the variable x. A formula, by contrast, denotes an

2We just mentioned—talked about—three specific strings, and therefore used single
quotes around them in order to name them. In a formal presentation of logic, we
would have to distinguish carefully between things and the names of things. In our
informal treatment, we shall be rather sloppy about the distinction, and we will revert
to the more careful naming only when it would be utterly confusing not to do so. For
example, once we begin to use the word ‘and’ in place of the connective &, to mean
‘P &Q’ we shall need to write “ ‘P and Q’ ” rather than “P and Q”, lest we confuse the
latter with the phrase “ ‘P ’ and ‘Q’ ”, as in the assertion: “The statements ‘P ’ and ‘Q’
are true.”

3We just did it—confused the name of a thing with the thing itself. When we wrote
“in a string S”, we did not necessarily mean to refer to the one-letter string ‘S’, but
rather, an arbitrary string that we are temporarily naming ‘S’.
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assertion—not necessarily true!—about such objects, such as:

3 ∈ N,
1/2+ 1/3 = 1/5,

(∃x)
(

x ∈ R & (∀y)(y ∈ R =⇒ x > y)
)

.

Thus a formula in the sense meant here need not at all be a formula in

the customary sense, such as V = πr 2h, telling how to compute one

quantity from others.

More formally, terms and formulas are those strings that can be

built up by a finite number of applications of the following rules:

• each letter is a term;

• if X and Y are terms, then both X = Y and X ∈ Y are formulas;

• if P is a formula, then ¬(P) is a formula;

• if P andQ are formulas, then each of (P)∨(Q), (P)∧(Q), (P) =⇒
(Q), and (P)⇐⇒ (Q) are formulas;

• if P is a formula and x is a letter that is free in P , then both

(∀x)(P) and (∃x)(P) are formulas; and

• if P is a formula and x is a letter that is free in P , then ( ιx)(P) is

a term.

For example,

(∀x)
(

¬(x = x)
)

(*)

and

( ιA)
(

(∀x)
(

(x ∈ A) ⇐⇒
(

¬(x = x)
)))

(**)

are formulas. (The first of these makes the false statement that each

object is unequal to itself. The second represents the object character-

ized by the property that no object belongs to it—the empty set ).

Notice that a string such as (∀x)
(

(∃x)(x = x)
)

is not a formula

according to the preceding rules, because the letter x is already bound

in (∀x)(x = x). On the other hand, (∀x)
(

(∃y)(x ∈ y)
)

is a formula.

Obviously formulas and terms written in strict compliance with

those rules can be awkward to read because of their length and all the

nested parentheses. In practice, we shorten such strings to make them

more readable (and writable!). One way to do so is to omit any pair of

parentheses immediately surrounding any quantified formula—one of

the form (∀x)(P), (∃x)(P), or ( ιx)(P)—in a larger formula. Thus, we

write

(∀x)(∃Y)(x ∈ Y)
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to mean

(∀x)
(

(∃Y)(x ∈ Y)
)

and write

(∀x)(x = x)∨ (∃y)
(

¬(y = y)
)

to mean
(

(∀x)(x = x)
)

∨
(

(∃y)
(

¬(y = y)
))

.

Terms and formulas become still shorter and more readable when

additional parentheses are omitted in accordance with a rule of order

of precedence. The order of precedence in logic is similar to the one

in algebra where multiplication takes precedence over addition, so that

x·y+zmeans (x·y)+z rather than x·(y+z). In logic, if we consider

the connectives and set-theoretic signs in the order

←− weaker = ∈ ¬ & ∨ =⇒ ⇐⇒ stronger −→

from “weakest” to “strongest”, then the rule is: when parentheses are

missing, the stronger sign reaches further. For example, x ∈ A ∨
x ∈ B means (x ∈ A) ∨ (x ∈ B), and x = y =⇒ x ∈ A means

(x = y) =⇒ (x ∈ A). The formula (*) on page L11 may now be written

in the shorter form

(∀x)(¬x = x)
and the term (**) on page L11 may now be written much more readably

as:

( ιA)(∀x)(x ∈ A ⇐⇒ ¬x = x)

The rule of precedence hardly allows us to remove all parentheses.

For example, the string

P =⇒ Q =⇒ ¬Q =⇒ ¬P

is ambiguous. When parenthesized as

(P =⇒ Q) =⇒ (¬Q =⇒ ¬P)

it will turn out to be a true formula no matter what the formulas P and

Q are; when parenthesized as

(

P =⇒ (Q =⇒ ¬Q)
)

=⇒ ¬P,

it is a formula that is true for some formulas P and Q but false for

others (namely, when P is true and Q is false).

Such examples suggest two of the commonly used definitions—

abbreviations, in effect—shown in Table L.2. These definitions provide

another way to shorten formulas and terms.
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Table L.2: Some common logical abbreviations.

Abbreviation Stands for Meaning

x ≠ y ¬(x = y) x is not equal to y

x ∉ A ¬(x ∈ A) x is not an element of A

(∀x ∈ X)(P) (∀x)
(

x ∈ X =⇒ P
)

for all x in X, P

(∃x ∈ X)(P) (∃x)
(

(x ∈ X) & (P)
)

there exists x in X such that P

With the first of the abbreviations in Table L.2, along with omis-

sions of superfluous parentheses, the formula (*) and the term (**) from

page L11 may be written in the still shorter forms

(∀x)(x ≠ x)

and

( ιA)(∀x) (x ∈ A ⇐⇒ x ≠ x).

What do you now think the preceding formula and term mean? (Use

Tables L.1 and L.2.)

Some quantified formulas, such as (∀x)(x = x), are intended to

make “universal” statements about all possible objects. Many quanti-

fied formulas, however, are intended to make statements about only

those objects that are elements of some particular set. Here are two,

expressed in typically informal mathematical language:

Every integer n that is a multiple of 4 is even.

Some real number has square 2.

These statements are, in other words:

For every integer n, if n is a multiple of 4, then n is even.

There is a real number x such that x2 = 2.

The intended meanings of these statements are:

For every n ∈ Z, if n is a multiple of 4, then n is even.

There exists x ∈ R such that x2 = 2.

And the latter two statements, in turn, are understood to mean:

For every n, if n ∈ Z, then: if n is a multiple of 4, then n is even.

There exists x such that x ∈ R and x2 = 2.
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Using the final two abbreviations in Table L.2, we may express these

statements more formally, using quantifiers, as:

(∀n ∈ Z)(n is a multiple of 4 =⇒ n is even).

(∃x ∈ R)(x2 = 2).

Suppose you were asked to prove the first of these two statements.

To do so, you would, of course, have to know the precise meaning of ‘n
is a multiple of 4’ and ‘n is even’. By definition, n is even when n = 2k
for some integer k, that is:

(∃k ∈ Z)(n = 2k)

Exercise L.2.1. (a) Write a definition for ‘n is a multiple of 4’, first

including words and then using symbols alone.

(b) Using your definition from (a) and the meaning of even, now prove:

(∀n ∈ Z)(n is a multiple of 4 =⇒ n is even).

(c) What, if anything, is wrong with the following proof of the state-

ment in (b)?

“Proof.” Let n ∈ Z. Assume n is a multiple of 4. Let k be

an integer for which n = 4k; such exists by the meaning

of ‘multiple of 4’. Then also n = 2k. This means that n
is even.

(d) Is it true that (∀n ∈ Z)(n is even =⇒ n is a multiple of 4)? If

so, prove it; if not, tell why not.

Exercise L.2.2. Symbolize the formula saying that for no integer n > 2

does the equation an + bn = cn have a solution in integers a, b, and

c other than a = b = c = 0. (You may use the term Z—the set of all

integers.) Then try to write the symbolized formula without using the

abbreviations and omissions of parentheses discussed above.

Exercise L.2.3. Symbolize the following sentences:

(a) The squares of real numbers are nonnegative.

(b) A differentiable function is continuous. (Use F to denote the set

of all real-valued functions of a real variable.)

According to the rules for forming terms and formulas, terms are of

two types—those of the form ( ιx)(P) and those that are single letters.

A term of the form ( ιx)(P) represents a specific object; such a term is

like a proper noun (‘Neil Armstrong’) or a definite description (‘the first
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human to walk on the Moon’) in ordinary English. A term that is a single

letter—also called a variable—ambiguously represents an unspecified

object; a variable is like a common noun (‘a person’, ‘a thing’) or a

pronoun (‘she’, ‘it’).

When a formula or term is, or includes, a string of the form (∀x)(P),
(∃x)(P), or ( ιx)(P), then the letter x is sometimes called a dummy

variable. This terminology is used to indicate that, without the meaning

being altered, the variable could be replaced by any other letter not

already occurring in that formula or term. Thus, the two formulas

For every x ∈ N, x2 ≥ 0

For every n ∈ N, n2 ≥ 0

although different, say in effect the same thing (namely, that the square

of each natural number is nonnegative). We stipulate that in such a

case, one is true exactly when the other is true. Likewise, the terms

( ιy)(∀x) (x ∈ y ⇐⇒ x ≠ x)

( ιS)(∀y) (y ∈ S ⇐⇒ y ≠ y)

are different but represent the same object, namely, the empty set ∅.

We stipulate that in such a case, the two objects are equal.

The situation with dummy variables in logic is akin to the one in cal-

culus, where the letter x in
∫ 1
0 e

−x2
dx is a dummy variable that could

be replaced by any other letter (except e andd):
∫ 1
0 e

−x2
dx =

∫ 1
0 e

−t2
dt.

But it is different from the situation with limits, where there is a dis-

tinction between limit of a function of a real variable x, on the one

hand, and the limit of a sequence defined in terms of a discrete, integer-

valued variable n, on the other hand. The convention in calculus is

that letters such as x and y and t refer to real variables, whereas let-

ters such as m and m and k refer to integers. Thus the statement

limx→∞ 2x/(1 + x) = 2 refers to the limiting behavior of the function

f(x) = 2x/(1+ x), defined for all real x ≠ −1, whereas the statement

limn→∞ 2n/(1+n) = 2 refers to the limiting behavior of the sequence

2/2,4/3,6/4,8/5,10/6, . . . . (Of course the formula for the limit of the

function of the real variable x implies the formula for the limit of the

sequence involving n.)

In various realms of mathematical discourse, it is not unusual to

adopt conventions about the domains of different sets of letters just

like those used in calculus. In this book, however, we shall generally

avoid such conventions and, instead, explicitly state the domain of the

variables we use. For example, we would not write (∀n)(n2 ≥ 0) to

suggest, “by agreement”, that the n is restricted to integers. Instead,

we write (∀n ∈ Z)(n2 ≥ 0).
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To deal with formulas involving dummy variables, some notation

helps. If x is a letter that occurs in a string P and that S is a string,

then

P[x → S]

will mean the string obtained by replacing each occurrence of x in P
by S. For example, if P is the formula (∀x ∈ N)(x2 ≥ 0) and S is the

letter y , then P[x → y] is the formula (∀y ∈ N)(y2 ≥ 0).

A formula in our sense is like a declarative sentence in ordinary lan-

guage. Thus, ‘0 < 1’ and ‘The empty set is a subset of X’ are (informal

renderings of) formulas, whereas the command ‘Solve x2 = 1’ and the

question ‘Is πe > eπ?’ are not.

Formulas, like terms, are of two types:

• A closed formula is one that contains no free letters. A closed

formula may make a definite assertion about the specific objects

named in it; for example, ‘The empty set ∅ is an element of the

one-element set {∅}’. Or, a closed formula may make a definite

assertion about all objects; for example, ‘For every X, the empty

set is a subset of X’.

• An open formula is one that contains at least one free letter. For

example, ‘The empty set is a subset ofX’. An open formula makes

an actual statement only when the free letters in it are replaced

by terms that are not letters. For example, replacing X by ∅ in

‘The empty set is a subset of X’ yields the formula ‘The empty set

is a subset of ∅’, which is no longer open and so is a statement.

A closed formula is sometimes called a statement, or sentence. It

makes sense to ask whether a statement is true. However, we shall

soon become sloppy about this usage and refer even to open formulas

such as x = x as “statements”.

To emphasize that a formula P is open because the variable x oc-

curring in it is free, we sometimes write P(x) and then call the formula

a predicate in x. For example, (∃y)(x ∈ y) is a predicate in x; but

it is not a predicate in y (because y is bound in the whole formula).

Similarly, we can have a predicate P(x,y) in two variables, such as

x ∈ y ∨y ∈ x.

It does not seem to make sense to ask whether an open formula is

true, because of the ambiguity of its free variables. For example, if P(x)
is the predicate x ∈ R ∧ x > 0, then P(x) is true when the variable x
is replaced by the term

√
2 but false when x is replaced by −1.



L.3 Proof and truth L17

L.3 Proof and truth

Logic is like a sewer—what you get out of it depends on what you put

into it: it cannot provide any “absolute” truth, only the truth of state-

ments relative to the truth of assumptions from which they are de-

duced. So we have to start with certain basic assumptions, and these are

called axioms. The three simplest axioms customarily used in mathe-

matics are:

Axioms L.3.1 (Axioms for Equality).

1. (reflexivity) (∀x) (x = x)

2. (symmetry) (∀x)(∀y) (x = y =⇒ y = x)

3. (transitivity) (∀x)(∀y)(∀z) (x = y & y = z =⇒ x = z)

The letters x, y , and z in these axioms are dummy variables, so

we must agree to accept as axioms all statements that result when we

legitimately replace these letters consistently by letters different from

x, y , and z. For example, we take

(∀x)(∀A) (x = A =⇒ A = x)

to be an axiom, too.

A statement C is said to be true when it has a proof. By a proof of

C is meant a (finite) list of statements, one after (or under) the other,

whose last statement is C and in which each statement is:

• an axiom,

• another (already proved) true statement, or

• a statement Q where P and P =⇒ Q are true statements that

appear before Q in the proof.

The statements in a proof are called the steps of the proof.

When you are asked to “prove” a statement you are, of course, being

asked to furnish a proof of it. Synonyms for prove are show, verify,

demonstrate, establish, and deduce.

The central ingredient of any proof is the pattern P , P =⇒ Q, Q,

which may be written with the aid of the symbol ∴ (therefore) in the

form:

P

P =⇒ Q
∴ Q
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(Many steps could intervene between P and P =⇒ Q.) This pattern is

known as Modus Ponens. Often one of the words “therefore”, “hence”,

or “thus” is used before the conclusion of a Modus Ponens.

Here is an example. We shall prove that 4 = 2 + 2 (not that you

doubted it!). We use the definitions (abbreviations) 2, 3, and 4 for the

terms 1 + 1, 2 + 1, and 3 + 1, respectively. We take to be true the

associative law

(∀m ∈ N)(∀n ∈ N)(∀k ∈ N)
(

(m+n)+ k =m+ (n+ k)
)

(*)

for addition of natural numbers. [Why this associative law is true is

another matter entirely—see Exercise 1.2.11 (1) (b).] For brevity, abbre-

viate the associative law (*) by A. Then our proof that 4 = 2 + 2 is as

follows:

4 = 3+ 1, that is, 4 = (2+ 1)+ 1

A =⇒ (2+ 1)+ 1 = 2+ (1+ 1)

∴ (2+ 1)+ 1 = 2+ (1+ 1)

(∀x)(∀y)(∀z)(x = y & y = z =⇒ x = z)
4 = (2+ 1)+ 1 & (2+ 1)+ 1 = 2+ (1+ 1) =⇒ 4 = 2+ (1+ 1)

∴ 4 = 2+ (1+ 1), that is, 4 = 2+ 2

The idea behind the second step in the preceding proof is to sub-

stitute 2 for m, 1 for n, and 1 for k, respectively, in the associative

law (*); this is an application of Universal Specialization (Axiom L.5.2),

stated later. The fifth step is just transitivity of equality—one of Ax-

ioms L.3.1. Then the next-to-last step follows from that by substituting

4 for x, (2 + 1) + 1 for y , and 2 + (1 + 1) for z, respectively; this is

another application of Universal Specialization.

In practice, we never—well, hardly ever—write a proof quite that

formally. And, in practice, we often include in the proof justifications

for many of its steps. An informal version of the same proof would be:

Proof. By the definitions, 4 = 3 + 1, that is, 4 = (2 + 1) + 1. From the

associative law for addition, 4 = 2+ (1+1). This means 4 = 2+2.

The symbol marks the end of a proof; it is the modern-day equiv-

alent of the traditional QED—an abbreviation for the Latin quod erat

demonstrandum, meaning ‘which was to be proved’.

In a technical sense, every true (because proved) statement may

be called a theorem. Then the just-proved statement 4 = 2 + 2 is

a theorem—but hardly an earth-shaking one. Generally we designate

as theorems only the most significant true statements. (You will find

only a handful of theorems in this book.) A true statement of lesser
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significance may be called a proposition, whereas an easily proved

consequence—for example, a special case—of a proposition or theorem

is usually called a corollary. A true statement whose main interest is

only in its use as a step in proving a more significant result is called a

lemma.

In view of the definition of what a proof is, we shall accept as a

proof of an implication P =⇒ Q the sequence of steps as shown in the

following proof rule:

Proof Rule L.3.2 (Direct Proof—AH). A list of steps of the following form

produces a proof of an implication P =⇒ Q:

Assume P .

[Steps of a proof in which P is treated as if it were an axiom.]

∴ Q

In such a proof, P is known as the assumed hypothesis. So the rule

is sometimes referred to as the Method of the Assumed Hypothesis—

hence the abbreviation AH. A fancier name for the method of direct

proof is the Herbrand-Tarski Deduction Criterion.

For example, here is a proof of the implication that, if a positive

integer n is divisible by 4, then n is even (that is, n is divisible by 2):

Proof. Let n be a positive integer. Assume n is divisible by 4. This

means there is some integer k for which n = 4k. Then n = 2(2k), and

2k is an integer. Thus n is even.

We shall reexamine this proof later, because several issues involving

quantifiers are involved.

Exercise L.3.3. Write out, or find in a calculus book, a proof of some

implication about differentiability of functions whose proof exploits

the Herbrand-Tarski Deduction Criterion.

L.4 Combining Statements

In our development of logic, the next thing to do is establish a series

of axioms governing the meaning of statements formed by combining

others through use of the connectives not, or, and, implies, and if and

only if. These axioms will also provide new proof rules as shortcuts

for constructing proofs. Since most meaningful examples of proofs

involve quantifiers, we defer stating these proof rules until Section L.6.

The simplest thing to do with a statement aside from asserting it

is to deny it. For a statement P , its negation is the statement ¬P ,

which is also expressed as ‘not P ’. In mathematical writing, ¬P may be
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expressed more verbosely, for example, as in, “It is not the case that

2 < −1.”

The negation of P is deemed to be false when P is true, and true when

P is false. We can express this situation by a truth table, as follows:

P ¬P
T F
F T

Down the left column of the truth table we have written the two possible

truth values T and F for P . These are, of course, abbreviations for true

and false, respectively. In the right column of the table are the truth

values of ¬P corresponding to each of those two truth values in turn.4

Implicitly in the truth table for ¬ we just gave meaning to the word

false. Here it is explicitly: A statement P is false when its negation ¬P
is true—that is, when ¬P can be proved. For example, 4 ≠ 2+2 is false

because (as was proved on page L18), the statement 4 = 2+ 2 is true.

Do not think that a negated statement (notP) has to be false just

because it has the word ‘not’ in it: ¬(0 = 1), that is, 0 ≠ 1, is true

(because 0 = 1 is false). This situation resembles that with negation

in algebra: an expression of the form −x need not denote a negative

number [because, for example, − (−1) > 0].

For statements P and Q, their conjunction P & Q, which is also

expressed by ‘P and Q’, is the statement that is true when both P and

Q are true, but false otherwise. In other words, the truth table for &

(and) is:

P Q P &Q

T T T
T F F
F T F
F F F

In the two columns at the left we have systematically written all four of

the possible pairs of truth values (TT , TF , FT , and FF ); in the column

at the right are the truth values of P &Q corresponding to each of these

four combinations of truth values in turn.

As with all the connectives, so & (and) is rendered in various ways in

4Strictly speaking, the column headings of a truth table (such as P and ¬P above)
are not actual statements but rather “statement-forms”. The table indicates what truth
value to ascribe in each case to the statement obtained from the heading of the last
column by replacing each of the constituent letters in the statement-form by an actual
statement. Nonetheless, we shall often speak as if the statement forms in a truth table
were actual statements.
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informal mathematical writing, as indicated in Table L.1. For example:

2n is even but 2n+ 3 is odd

∅ is empty whereas {∅} is nonempty

x2 ≥ 0 yet x < 0

For statements P and Q, their disjunction P ∨Q, which is also ex-

pressed by ‘P or Q’, is the statement that is true when at least one of

P , Q is true—in other words, when P is true, Q is true, or P and Q are

both true—and false otherwise. Thus or is used in the inclusive sense

to allow that both individual statements connected by it be true and yet

their disjunction also be true. In other words, the only case in which

P ∨Q is false is that in which both P and Q are false. The truth table

for ∨ (or ) is:
P Q P ∨Q
T T T
T F T
F T T
F F F

The inclusive sense of or is just what is intended, for example, in the

mathematical statement that x ≤ y∨y ≤ x is true for all real numbers

x and y : when x = y , then both x ≤ y and y ≤ x are separately

true. In ordinary language, this use of or in the inclusive sense can

be annoying: pity the poor restaurant waiter who, upon asking the

mathematician diner, “Would you like soup or salad?” receives the

answer, “Yes.”

Students are sometimes puzzled or even annoyed when they are

told that the statement “4 ≤ 2+ 2” is true; they complain, “How can 4

be less than or equal to 2+2 when, in fact, 4 is exactly equal to 2+2?”

Now according to the definition of ≤, the statement “4 ≤ 2+ 2” means

“4 < 2 + 2 or 4 = 2 + 2”. Whereas the statement “4 < 2 + 2” is false,

the statement “4 = 2 + 2” is true. Then the truth table for ∨ gives us

no choice: the disjunction “4 < 2+ 2 or 4 = 2+ 2” must be true.

Exercises L.4.1. For statements P and Q, how would you symbolize

each of the following?

(1) “Exactly one of P andQ.” (As in, for example: “If x ∈ R and x ≠ 0,

then exactly one of x < 0 and x > 0 holds.”)

(2) “Neither P nor Q.” (As in, for example, “The number 0 is neither

positive nor negative.”)

A statement may also be built up using logical connectives from

more than two constituent statements. For example, (P&Q)∨R involves
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three statements P , Q, and R. Then the truth table for this statement

requires 2 · 2 · 2 = 23 = 8 combinations of truth values. To help us

obtain the result column of truth values for the entire statement,we

ordinarily insert intermediate columns showing the truth values of its

components:
P Q R P &Q (P &Q)∨ R
T T T T T
T T F T T
T F T F T
T F F F F
F T T F T
F T F F F
F F T F T
F F F F F

Apply the truth table for ∨ in the special case thatQ is the negation

¬P of P . The first and fourth rows of the body of the table are irrelevant

here: in view of the truth table for ¬, the truth value of Q cannot be

chosen independently of the truth value of P . Thus we get the truth

table
P ¬P P ∨¬P
T F T
F T T

According to the table, no matter what the truth value of P itself, the

statement P ∨ ¬P has the truth value T . A statement such as this is

called a tautology to mean that each of the entries in the last column

of its truth table is a T .

Tautology L.4.2 (Law of the Excluded Middle). Let P be a statement.

Then:

P ∨¬P

We stipulate that every tautology is an axiom.

For example, according to the Law of the Excluded Middle P ∨¬P is

an axiom no matter what the statement P might be.5

When asked on an exam to prove a certain proposition, a student

once answered: “By the Law of the Excluded Middle, either the proposi-

tion is true or it is false. If it is true, then there is no need for me to prove

it; if it is false, I can hardly be asked to prove it!” The student’s response

betrays a fundamental—and all too common—misunderstanding of the

5Strictly speaking, the phrase ‘P ∨ ¬P ’ is only an axiom-form because the ‘P ’ there
is only a statement form. Our stipulation about axioms resulting from tautologies
really means the following: Every statement that results from replacing each constituent
letter in a tautology by an actual statement is an axiom. For example, the instance
(πe < eπ )∨ (πe ≥ eπ ) of P ∨¬P is such an axiom; so is (2e ∈ Q)∨ (2e ∉ Q), where Q
is the set of all rational numbers.
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Law of the Excluded Middle. All this tautology does is assert the truth

of the compound statement P∨¬P no matter what the truth value of P
itself; it says nothing about the truth or falsity of P itself. For example,

it is true that 2e is rational or 2e is irrational, but so far nobody has

been able to determine which of the two possibilities holds! Moreover,

it is entirely possible, albeit disconcerting, that somebody will discover

a mathematical statement that cannot be proved and yet whose nega-

tion also cannot be proved—in other words, that some mathematical

statement is neither true nor false!

The logical connective most central to the very notion of proof is=⇒.

For statements P and Q, the implication P =⇒ Q may be expressed as

‘P implies Q’, as ‘if P then Q’, or in one of the other ways listed in

Table L.1. The implication P =⇒ Q is taken to be true in every case

except when P is true andQ is false. In other words, the truth table for

=⇒ is:
P Q P =⇒ Q
T T T
T F F
F T T
F F T

In an implication P =⇒ Q, the statement P is called the hypothesis (or

premise), and the statement Q is called the conclusion.

Most people have no difficulty accepting what the truth table for =⇒
indicates in the two cases where P is true. But the two cases where P is

false often cause some consternation. They should not, because these

two cases do reflect the way ‘if …then’ is used in everyday language.

For example, “If you are good, then I will give you some candy.” We

understand this as a promise to be honored no matter what. If you are

not good and I give you no candy, I certainly do not break the promise.

If you are not good and yet I still give you candy, I also do not break

the promise (even though my promise may not have the intended effect

the next time I make it).6

Notice the “asymmetry” between P and Q in P =⇒ Q: For particular

statements P and Q, the implication P =⇒ Q may be true whereas its

converseQ =⇒ P may be false. For example, take P to be the statement

1 = 0 and Q to be the statement 0 = 0. Then the implication 1 =
0 =⇒ 0 = 0 is true because its hypothesis 1 = 0 is false. However, the

converse implication 0 = 0 =⇒ 1 = 0 is false because its hypothesis

0 = 0 is true whereas its conclusion 1 = 0 is false.

6Calling an implication true when its hypothesis and conclusion are both false is
problematic, however, when the hypothesis and conclusion are about real-world events.
For example: “If Great Britain had won the War for Independence, then the United
States would be a British colony today.” What do we really mean when we utter such a
“counterfactual conditional”?
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Exercise L.4.3. What is the relationship between the truth of an impli-

cation P =⇒ Q and that of its contrapositive ¬Q =⇒ ¬P ?

Numerous tautologies and resulting axioms can now be derived.

One such tautology is:

P &Q =⇒ P

Its truth table is:

P Q P &Q P P &Q =⇒ P

T T T T T
T F F T T
F T F F T
F F F F T

Notice that the fourth column, headed P , repeats the first. The fourth

column is not really needed, but it was inserted to the right of the

column headed P &Q to facilitate using the truth table for =⇒ in order

to fill in the final column.

Here are a couple more tautologies involving implication:

P =⇒ P ∨Q
(P =⇒ Q) =⇒ (R ∨ P =⇒ R ∨Q)

For statements P and Q, the logical equivalence P ⇐⇒ Q may be

expressed as ‘P is equivalent to Q’, as ‘P if and only if Q’, or in one of

the other ways listed in Table L.1. The equivalence P =⇒ Q is taken to

be true exactly when P and Q have the same truth value, that is, when

they are both true or else both false. In other words, the truth table for

⇐⇒ is:
P Q P ⇐⇒ Q
T T T
T F F
F T F
F F T

An equivalence P ⇐⇒ Q is true precisely when the implication P =⇒
Q and its converseQ =⇒ P are both true. In other words, the following

is a tautology:

Tautology L.4.4. let P and Q be statements. Then:

(P ⇐⇒ Q) ⇐⇒
(

(P =⇒ Q) & (Q =⇒ P)
)

To verify this tautology, compare the truth table for P ⇐⇒ Q with

that for (P =⇒ Q) & (Q =⇒ P).
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A common way to prove a statement of the form P ⇐⇒ Q is to prove

separately the implications P =⇒ Q and Q =⇒ P . Can you justify that

way?

Many of the most useful tautologies are logical equivalences. Here

are some.

Tautologies L.4.5. Let P , Q, and R be statements. Then:

1. (double negation) P ⇐⇒ ¬¬P

2. (idempotent law) P ∨ P ⇐⇒ P

3. (idempotent law) P & P ⇐⇒ P

4. (commutative law) P ∨Q ⇐⇒ Q∨ P

5. (commutative law) P &Q ⇐⇒ Q & P

6. (associative law) (P ∨Q)∨ R ⇐⇒ P ∨ (Q∨ R)

7. (associative law) (P &Q) & R ⇐⇒ P & (Q & R)

8. (distributive law) P ∨ (Q & R) ⇐⇒ (P ∨Q) & (P ∨ R)

9. (distributive law) P & (Q∨ R) ⇐⇒ (P &Q)∨ (P & R)

Exercise L.4.6. Use truth tables to establish parts 1, 2, 4, 6, and 8 of

the preceding list of tautologies.

The following three tautologies express fundamental properties of

logical equivalence. They are easy enough to establish by constructing

truth tables. They may also be deduced from Tautology L.4.4 and some

of the other, previously listed tautologies.

Tautologies L.4.7. Let P , Q, and R be statements. Then:

1. P ⇐⇒ P

2. (P ⇐⇒ Q) =⇒ (Q ⇐⇒ P)

3.
(

(P ⇐⇒ Q) & (Q ⇐⇒ R)
)

=⇒ (P ⇐⇒ R)

That an implication P =⇒ Q is false only in the case that P is true

but Q is false, and the implication is true in every other case, is also

expressed by the following tautology.

Tautology L.4.8. Let P and Q be statements. Then:

(P =⇒ Q) ⇐⇒ (¬P ∨Q)

Exercise L.4.9. Use connectives to symbolize ‘P unless Q’ for state-

ments P and Q.
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Often in constructing proofs you will want to form the negation

of a compound or - or and-statement. For this the following pair of

tautologies are relevant:

Tautologies L.4.10 (De Morgan’s Laws). Let P and Q be statements.

Then:

1. ¬(P ∨Q) ⇐⇒ (¬P) & (¬Q)

2. ¬(P &Q) ⇐⇒ (¬P)∨ (¬Q)

Here is an instance of the first of De Morgan’s Laws: To deny that

an integer n is a multiple of 2 or a multiple of 3 is to affirm that it is not

the case that n is a multiple of 2 and a multiple of 3; in other words,

that n is neither a multiple of 2 nor a multiple of 3. You should be able

to write a similar instance of the second of De Morgan’s Laws.

Exercise L.4.11. Use De Morgan’s Laws to deduce Tautologies L.4.5

parts 3, 5, 7, and 9 from parts 2, 4, 6, and 8, respectively. (For ex-

ample, use the idempotent law P ∨P ⇐⇒ P together with De Morgan’s

Laws to deduce the idempotent law P & P ⇐⇒ P .)

It is easy to check that the following are tautologies:

(

(¬P) & (P ⇐⇒ P ′)
)

=⇒ (¬P ′)
(

(P ∨Q) & (P ⇐⇒ P ′) & (Q ⇐⇒ Q′)
)

=⇒ (P ′ ∨Q′)
(

(P &Q) & (P ⇐⇒ P ′) & (Q ⇐⇒ Q′)
)

=⇒ (P ′ &Q′)
(

(P =⇒ Q) & (P ⇐⇒ P ′) & (Q ⇐⇒ Q′)
)

=⇒ (P ′ =⇒ Q′)

Together these tautologies justify the following rule: Let S be a state-

ment built up in some way from simpler statements P1, P2, . . . , Pn by us-

ing the logical connectives. If one or more of the constituent statements

Pi are replaced by equivalent statements P ′i , then the resulting statement

S ′ has the same truth value as the original statement S.

We have not attempted to list here all the tautologies commonly

used in constructing proofs. Consequently, when you see a proof whose

pattern is unfamiliar, you should suspect that it is justified by an ax-

iom resulting directly from some as-yet-unstated tautology—and you

should attempt to write that tautology and verify it (by using other

tautologies or directly, by constructing the truth table).

L.5 Quantifiers

The logical quantifiers ∀ (for all, for every), ∃ (there exists, for some),

and

ι

(the) were already introduced. Here we examine them further and,

in particular, state some axioms and tautologies involving them.
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The quantifiers have no real effect unless the formula to which they

are applied involve a free variable. That is why, to emphasize the fact

that a letter x is a free variable in the formula P , we also denote the

formula by P(x) and then call it a predicate in x. [Recall that, in partic-

ular, x is free in P when x does not occur in P , but still we might write

P(x).]
The letter x used in a universally or existentially quantified state-

ment about a predicate P(x) is a dummy variable that can be replaced

by another letter, as stated precisely in the following axiom.

Axiom L.5.1. Let x be a free variable in the formula P and let y be a

letter that does not occur in P . Then:

1. (∀x)P(x) ⇐⇒ (∀y)P[x → y]

2. (∃x)P(x) ⇐⇒ (∃y)P[x → y]

As already suggested in Table L.1, the statement (∀x)P(x) involv-

ing the universal quantifier ∀ may be read or expressed variously as:

for every x, P(x)

for all x, P(x)

for each x, P(x)

for arbitrary x, P(x)

Sometimes, (∀x)P(x) is even expressed as “for any x, P(x).” However,

it is best to avoid using ‘any’ this way, since in some contexts ‘any’ can

mean ‘some’! (Compare: “Can you draw any conclusion from that?”)

Often a statement of the form (∀x)P(x) is expressed with addi-

tional words, such as:

for every x, it is the case that P(x)

for each x, the property P(x) holds

The word ‘any’ is sometimes used to suggest a universally quantified

statement. For example: “Any even integer has a square that is even.”

“Any integer that is even has an even square.” “The square of any even

integer is even.” Sometimes the ‘every’, ‘all’, ‘each’, or ‘any’ is deleted

as in: “An even integer has an even square” and “The square of an even

integer is even.”

The universal quantifier was used, for example, in formulating the

Axioms for Equality (Axioms L.3.1), which were:

(∀x) (x = x)
(∀x)(∀y) (x = y =⇒ y = x)

(∀x)(∀y)(∀z) (x = y & y = z =⇒ x = z)



L28 Appendix L. A Little Logic September 17, 2007, draft

The intended meaning of the universal quantifier ∀ in (∀x)P(x)
is that (∀x)P(x) be true precisely when P(x) is true no matter what

particular term is substituted for x in P(x). We formulate this mean-

ing in an axiom. The formulation uses the notation P[x → X] which,

you should recall, means that every occurrence of the letter x in P is

replaced by the string X.

Axiom L.5.2 (Universal Specialization). Let x be a free variable in the

formula P and let X be a term. Then:

(∀x)P(x) =⇒ P[x → X]

Informally speaking, Universal Specialization expresses that when

some property holds about every object in the mathematical world, it

must also hold for any particular object. For example, according to US,

(∀x) (x = x) =⇒ ∅ = ∅

is an axiom. Since (∀x) (x = x) is an axiom, then

∅ =∅

is therefore true.

More generally, in view of AH (the Herbrand-Tarski Deduction Crite-

rion, Proof Rule L.3.2), the preceding axiom provides a corresponding

proof rule.

Proof Rule L.5.3 (Universal Specialization—US). Let x be a free vari-

able in the formula P and let X be a term. If (∀x)P(x) is true, then

P[x → X] is true.

The order of consecutive universal quantifiers in a statement is im-

material:

Axiom L.5.4. Let x and y be free in the formula P(x,y). Then:

(∀x) (∀y)P(x,y) ⇐⇒ (∀y) (∀x)P(x,y)

Exercise L.5.5. (a) Does the order of consecutive existential quanti-

fiers in a statement matter? That is, is (∃x)(∃y)P(x,y) logically

equivalent to (∃y)(∃x)P(x,y)? Why or why not?

(b) Is (∃x)(∃y)P(x,y) logically equivalent to (∃y)(∃x)P(y,x)? Why

or why not? [Notice that here the order of the letters in P(x,y)
is also reversed.]

Axioms L.5.6. Let x be free in the formulas P(x) and Q(x). Then:

1. (∀x)
(

P(x) &Q(x)
)

⇐⇒ (∀x)P(x)
)

&
(

∀x)Q(x)
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2. (∀x)
(

P(x) =⇒ Q(x)
)

⇐⇒
(

(∀x)P(x) =⇒ (∀x)Q(x)
)

As always, so in the preceding pair of axioms, the letter x need not

actually occur in either P or Q. If x does not occur, say, in P but does

occur as a free variable in Q, we could rewrite the first of the pair as:

(∀x)
(

P &Q(x)
)

⇐⇒ (∀x)P & (∀x)Q(x)

Similarly for the second axiom.

Often you will see the axioms for equality written in the simpler

forms

x = x
x = y =⇒ y = x

x = y & y = z =⇒ x = z

where the universal quantifiers are omitted but implicit. To justify such

omissions, we rely upon the following proof rule.

Proof Rule L.5.7 (Universal Generalization—UG). Suppose the letter x
is free in the formula P(x). If P(x) is true, then (∀x)P(x) is true.

In view of this proof rule, we sometimes refer to an formula as if it,

too, were a statement.

Notice that we did not first give as an axiom “P(x) =⇒ (∀x)P(x)”
and then suggest that the proof rule UG is a consequence. Indeed, there

are two essential restrictions upon the use of UG:

• The letter x is not free in any preceding step in the proof that

results by using Existential Specialization (ES); and

• If in a preceding step of the proof AH (Proof Rule L.3.2) was used

to deduce a statement C by assuming a hypothesis H, then AH

has already been invoked to prove H =⇒ C , and H is no longer

being assumed.

In particular, Universal Generalization may not be used in a proof

of the following form.

Assume P(x).

(∀x)P(x) (by UG).

∴P(x) =⇒ (∀x)P(x) (by the Deduction Criterion).

And thus Universal Generalization may not be invoked so as to prove

the formula:

P(x) =⇒ (∀x)P(x) Wrong!
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That formula is wrong because the letter x is unbound in P(x) but

bound in (∀x)P(x). In fact, suppose it were legitimate to deduce that

implication. Since x is a dummy variable in (∀x)P(x), then x in this

universally quantified statement could be replaced by a different letter

y so as to deduce:

P(x) =⇒ (∀y)P(y) Wrong!

Why that restriction? Just suppose that, to the contrary, it were

legitimate to deduce the preceding implication. As an example, take

P(x) to be the predicate x ∈ N =⇒ x > 0. Then (x ∈ N =⇒ x > 0) =⇒
(∀x)(x ∈ N =⇒ x > 0) would be true. Replace x by y in the quantified

part of this formula to obtain (x ∈ N =⇒ x > 0) =⇒ (∀y)(y ∈
N =⇒ y > 0), which would then also be true. Now the hypothesis

1 ∈ N =⇒ 1 > 0 is true. Hence the conclusion (∀y)(y ∈ N =⇒ y > 0)
would also be true. But clearly it is false!

Here is an example of how proof rule UG is employed. Suppose you

want to prove that

(∀x)(∀y)(∀z)(x = y & z = y =⇒ x = z).

Note that, in this statement, the & has a higher precedence than =⇒, so

that the statement means:

(∀x)(∀y)(∀z)
(

(x = y & z = y) =⇒ x = z
)

Then you could write a proof of the statement without any quantifiers

whatsoever by using the axioms for equality and invoking US implicitly

as follows:

Proof.

z = y =⇒ y = z
x = y & z = y =⇒ x = y & y = z
x = y & y = z =⇒ x = z
x = y & z = y =⇒ x = z.

In practice, we do not usually write the proof in such excruciating detail.

Rather, we shorten it and express it more informally, as follows:

Proof. Assume x = y and z = y . By symmetry of equality, y = z. By

transitivity of equality, then x = z.

In the proof on page L19 that if a positive integer n is divisible by

4, then n is even, several steps appear only implicitly. Here is a more

complete version of the proof in which those steps have been made

explicit:



L.5 Quantifiers L31

Let n be a positive integer. Assume n is divisible by 4. This

means there is some integer k for which n = 4k. Let k be

such an integer. Then n = 2(2k). Let t = 2k. Then t is

an integer such that n = 2t. This means that there is some

integer t such that n = 2t. Thus n is even.

Recall that the step “Assume n is divisible by 4” indicates a use of

the Herbrand-Tarski Deduction Criterion (Proof Rule L.3.2). Aside from

that proof rule, three issues about quantifiers are also involved in the

preceding proof:

1. What is being proved is really a universally quantified statement:

For every positive integer n, if n is divisible by 4, then

n is even.

To prove this universally quantified statement, we removed the

“For every” part “For every positive integer n” involving the uni-

versal quantifier and instead wrote, “Let n be a positive integer”—

meaning, “Let n be an arbitrary (but specific) positive integer”.

Then, using several steps, we proved, “Ifn is divisible by 4, thenn
is divisible by 2.” That this procedure actually proves the univer-

sally quantified statement is justified by Universal Generalization

(Proof Rule L.5.7).

2. Recall that the assumption thatn is divisible by 4 meant that there

exists some integer k such that n = 4k. So the more complete

version of the proof said next, “Let k be such an integer,” in other

words:

Let k be a particular integer such that n = 4k.

That is justified by the principle of Existential Specialization—ES,

for short.

3. After letting t = 2k, where k was that particular integer obtained

from ES, we deduced that

n = 2t

for that particular t (which depended upon the particular k). And

from that in turn we deduced:

There is some integer t such that n = 2t

Putting the existential quantifier back there is justified by the prin-

ciple of Existential Generalization—EG, for short.
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Here are the precise formulations of ES and EG.

Proof Rule L.5.8 (Existential Specialization—ES). Let x be a letter that

is free in P and does not occur in C . Suppose that both

(∃x)(P(x)

and

P(x) =⇒ C

are true. Then C is true.

Proof Rule L.5.9 (Existential Generalization—EG). Suppose x is free in

P and S is a term. If P[x → S] is true, then (∃x)P(x) is true.

Existential Generalization says, in effect, that one way to prove ex-

istence of an object x with a certain property P(x) is to construct or

“exhibit” a particular object S having that property. For example, to

prove there exists some nonempty set—that is, (∃A)(A ≠ ∅)—you

could construct the set {∅} and note that {∅} is not empty—that is,

{∅} ≠ ∅—because ∅ ∈ {∅}. Or, to prove there exists some negative

integer whose square is 4, you could exhibit the integer −2 and note

that (−2)2 = 2.

Recall that (∃x ∈ X)P(x) is an abbreviation for (∃x)
(

x ∈ X&P(x)
)

.

Then Existential Generalization has as a particular case the situation

where the formula P(x) takes the form x ∈ X &Q(x) for a predicate

Q(x).

Proof Rule L.5.10 (Existential Generalization—relative form—EG).

Suppose x is free in P and s and X are terms. If s ∈ X and P[x → s]
are both true, then (∃x)P(x) is true.

Recall that (∀x ∈ X)(P) is an abbreviation for (∀x)(x ∈ X =⇒
P). For now we shall also take as axiomatic the following variant of

Universal Specialization:

Axiom L.5.11 (Universal Specialization—relative form). Letx be a free

variable in the formula P and let a and X be terms. Then:

(∀x ∈ X)
(

P(x)
)

& a ∈ X =⇒ P[x → a]

The preceding axiom means that when some property holds for ev-

ery element of a set X and when a is one of the elements of X, then

the property must hold, in particular, for a. Surely you have no qualms

about accepting that! (Actually, it can be deduced from US.)

As an example of this relative form of US, look again at the proof

that 4 = 2 + 2 (see page L18). Again, abbreviate by A the associative

law

(∀m ∈ N)(∀n ∈ N)(∀k ∈ N)
(

(m+n)+ k =m+ (n+ k)
)

.
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Then our proof that 4 = 2+ 2 is as follows:

4 = 3+ 1, that is, 4 = (2+ 1)+ 1

A

A =⇒ (2+ 1)+ 1 = 2+ (1+ 1)

∴ (2+ 1)+ 1 = 2+ (1+ 1)

(∀x)(∀y)(∀z)(x = y & y = z =⇒ x = z)
4 = (2+ 1)+ 1 & (2+ 1)+ 1 = 2+ (1+ 1) =⇒ 4 = 2+ (1+ 1)

∴ 4 = 2+ (1+ 1), that is, 4 = 2+ 2

The third step and sixth steps are applications of the relative form

of US.

The relative form of Universal Specialization, Axiom L.5.11, justifies

the following proof method:

Proof Rule L.5.12. Let X is a set and let P(x) be a predicate in x. Then

following is a proof of (∀x ∈ X)P(x):

Let x ∈ X.

Proof of P(x) where x ∈ X is assumed to be an axiom.

Intuitively, to deny that a certain property holds for all x is to as-

sert that it fails to hold for some x. We express this formally in an

axiom, which relates universal and existential quantification by means

of negation.

Axiom L.5.13. Let P(x) be a predicate in x. Then:

¬(∀x)P(x) ⇐⇒ (∃x)
(

¬P(x)
)

By applying negation to both sides of the equivalence in Axiom L.5.13,

and replacing P(x) in it by¬P(x), we obtain at once the first part of the

following theorem; the second part follows from the first by replacing

negating both sides of the first part.

Theorem L.5.14. Let P(x) be a predicate in x. Then:

1. ¬(∃x)P(x) ⇐⇒ (∀x)
(

¬P(x)
)

2. (∃x)P(x) ⇐⇒ ¬(∀x)
(

¬P(x)
)

The second part of the preceding theorem implies something sig-

nificant about mathematical proof as it is commonly understood: To

prove existence of some x for which P(x) holds, it suffices to prove it

false that the negation of P(x) holds for every x.
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Thus one can prove existence of an object with a certain property

without actually constructing or exhibiting a particular object with that

property!7

L.6 More proof rules

7A small minority of mathematicians, the “constructivists,” object to establishing
existence of an object having a given property without actually constructing a particular
object having that property. In other words, they reject Axiom L.5.13.


