Proof of the Gap Lemma¹ October 22, 2007, 11:26am

This note provides a proof of the Gap Lemma based ultimately upon the Peano Postulates. It collects all the requisite preliminary results about \mathbb{N} .

The Gap Lemma. For each natural number m, there exists no natural number n for which m < n < n + 1.

Lemma 1. For each natural number $m \neq 0$, there exists a natural number k such that m = k + 1.

Proof. This follows from the consequence $\sigma(\mathbb{N}) = \mathbb{N}^*$ of the Peano Postulates.

Recall the notation $n + 1 = \sigma(n)$ for a natural number n.

Lemma 2. If $k_1, k_2 \in \mathbb{N}$ and $k_1 + 1 = k_2 + 1$, then $k_1 = k_2$.

Proof. This just restates the Peano Postulate that $\sigma : \mathbb{N} \to \mathbb{N}$ is injective. \Box

According to Lemmas 1 and 2, for each natural number $m \neq 0$, there is *exactly one* natural number k such that m = k + 1. This justifies the following definition.

Definition 3. Let *m* be a natural number with $m \neq 0$. By m - 1 we denote the unique natural number *k* for which k+1 = m. In other words, the natural number m - 1 is uniquely defined by:

$$(m-1)+1=m$$

The recursive definition of addition of natural numbers is as follows [see Example 1.2.10 (2)].

Definition 4. For each $m \in \mathbb{N}$:

$$\begin{cases} m+0=m\\ m+(n+1)=(m+n)+1 \qquad (n\in\mathbb{N}) \end{cases}$$

Proposition 5. Addition in \mathbb{N} is associative and commutative.

Proof. See Exercises 1.2.11 (a)–(c). \Box

The "strict" order relation < in \mathbb{N} and the associated "weak" order relation \le in \mathbb{N} are defined as follows [see Exercise 1.2.11 (2)]:

Definition 6. Let $m, n \in \mathbb{N}$. Then m < n is defined to mean there exists some $d \in \mathbb{N}^*$ for which m + d = n. And $m \le n$ is defined to mean m < n or m = n.

Remark. Let $m, n \in N$. Then $m \le n$ if and only if there exists some $d \in \mathbb{N}$ for which m + d = n.

¹Copyright ©2007 Murray Eisenberg. All Rights Reserved

Lemma 7. *The relation* < *in* \mathbb{N} *has the properties:*

- *1.* (transitivity) For all $m, n, k \in \mathbb{N}$, if m < n and n < k, then m < k.
- *2.* (irreflexivity) *For all* $m \in \mathbb{N}$ *, we have* $m \notin m$ *.*
- *3.* (asymmetry) *for all* $m, n \in \mathbb{N}$ *, if* m < n*, then* $n \notin m$ *.*
- *Proof.* 1. Let $m, n, k \in \mathbb{N}$ with m < n and n < k. There exists, $t \in \mathbb{N}^*$ for which m + s = n and n + t = k, respectively. Then m + (s + t) = k. Of course $s + t \in \mathbb{N}$. Moreover, $s + t \neq 0$. In fact, $s + t = s + ((t 1) + 1) = (s + (t 1)) + 1 \neq 0$ because it is the successor of a natural number. [Here we used the Peano Postulate that $0 \notin \sigma(\mathbb{N})$.]
 - 2. This is an exercise.
 - 3. Let $m, n \in \mathbb{N}$ with m < n. Just suppose n < m. By transitivity, m < m. But this contradicts irreflexivity. \Box

Lemma 8. The weak relation \leq in \mathbb{N} is a partial ordering of \mathbb{N} .

Proof. First, \leq is reflexive: $m \in \mathbb{N}$ implies $m \leq m$ because, in fact, m = m. Second, \leq is transitive: this is an easy consequence of transitivity of <.

Third, \leq is antisymmetric: Let $m, n \in \mathbb{N}$ with $m \leq n$ and $n \leq m$. Just suppose, though, that $m \neq n$. Since $m \leq n$, then m < n; similarly, n < m. This contradicts irreflexivity of < (Lemma). \Box

The next result says that addition of natural numbers "preserves order". [The first part is Exercise 1.2.11 (2).]

Proposition 9. *Let* $m, n \in \mathbb{N}$ *. Then:*

 $m \le n \implies m+k \le n+k \text{ for all } k \in \mathbb{N},$ $m < n \implies m+k < n+k \text{ for all } k \in \mathbb{N}.$

Proof. Assume m < n. By definition, there exists $d \in \mathbb{N}^*$ with m + d = n. Then for each $k \in \mathbb{N}$, we have (m + k) + d = (m + d) + k = n + k and so m + k < n + k by definition of < again.

The proof of the result about $m \le n$ is left as an exercise. \Box

Proposition 10. *The relation* \leq *is a total ordering of* \aleph *.*

Proof. According to Lemma 8, already \leq partially orders \aleph . It remains only to prove that \leq has the comparability property: $m, n \in \aleph \implies m \leq n$ or $n \leq m$. We use induction on n to prove that, for each $n \in \aleph$:

$$(\forall m \in \mathbb{N})(m \le n \text{ or } n \le m)$$
 (*)

Base step (n = 0): If $m \in \mathbb{N}$, then m = 0 + m so that $0 \le m$.

Inductive step: Let $n \in \mathbb{N}$ an assume (*). Let $m \in \mathbb{N}$. We wish to deduce that $m \le n + 1$ or $n + 1 \le m$.

If m = 0, then already $m = 0 \le n + 1$.

Now suppose $m \neq 0$. There exists $k \in \mathbb{N}$ with m = k + 1. By the inductive assumption, $k \leq n$ or $n \leq k$. If, on the one hand, $k \leq n$, then $m = k + 1 \leq n + 1$ and so $m \leq n + 1$. If, on the other hand, n < k, then n + 1 < k + 1 = m, so that n + 1 < m, and a fortiori $n + 1 \leq m$. \Box

Lemma 11. For each natural number n, we have $n \neq 0$.

Proof. Just suppose there is some natural number n for which n < 0. By definition of <, this means there is some $k \in \mathbb{N} *$ for which n + k = 0. \Box

The final lemma here is the crux of the Gap Lemma: *there is no natural number strictly between* 0 *and* 1.

Lemma 12. There exists no natural number n for which 0 < n < 1.

Proof. What is to be proved is $\neg (\forall n \in \mathbb{N})(0 < n < 1)$. Now 0 < n < 1 means 0 < n & n < 1. Thus what is to be proved is, equivalently:

$$(\forall n \in \mathbb{N}) (n \le 0 \text{ or } 1 \le n)$$

We use induction on *n*.

Base step (n = 0): Since $0 \le 0$, certainly $0 \le 0$ or $1 \le 0$.

Inductive step: Now let $n \in \mathbb{N}$ and assume $n \leq 0$ or $1 \leq n$. There are two cases.

Case (i): $n \le 0$. In this case, by the preceding lemma n = 0. Then 1 = n + 1, which means $1 \le n + 1$.

Case (ii): $1 \le n$. In this case, also $1 \le n + 1$. Thus in either case actually $1 \le n + 1$. \Box

Proof of Gap Lemma. We shall prove, equivalently, that, for each $m \in \mathbb{N}$:

$$(\forall n \in \mathbb{N}) (n \le m \text{ or } m + 1 \le n).$$

(Compare the logical analysis at the start of the proof of the preceding lemma.) We use induction on m.

Base step (m = 0): This is the assertion of Lemma 12 *Inductive step*. Now let $m \in \mathbb{N}$ and accuracy

Inductive step: Now let $m \in \mathbb{N}$ and assume

$$(\forall n \in \mathbb{N}) (n \le m \text{ or } m + 1 \le n).$$
 (**)

We want to deduce $(\forall n \in \mathbb{N})(n \le m + 1 \text{ or } m + 1 \le n)$. Let $n \in \mathbb{N}$. By the inductive assumption (**), $n \le m$ or $m + 1 \le n$. There are two cases. If, on the one hand, $n \le m$, then certainly $n \le m + 1$. If, on the other hand, $m + 1 \le n$, then also $m + 1 \le n + 1$. Thus in either case $n \le m + 1$ or $m + 1 \le n$. This completes the proof of the inductive step. \Box