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This note provides a proof of the Gap Lemma based ultimately upon the Peano

Postulates. It collects all the requisite preliminary results about N.

The Gap Lemma. For each natural number m, there exists no natural number n

for which m < n < n+ 1.

Lemma 1. For each natural number m ≠ 0, there exists a natural number k such

that m = k+ 1.

Proof. This follows from the consequence σ(N) = N∗ of the Peano Postulates.

Recall the notation n+ 1 = σ(n) for a natural number n.

Lemma 2. If k1, k2 ∈ N and k1 + 1 = k2 + 1, then k1 = k2.

Proof. This just restates the Peano Postulate that σ : N→ N is injective.

According to Lemmas 1 and 2, for each natural numberm ≠ 0, there is exactly

one natural number k such thatm = k+1. This justifies the following definition.

Definition 3. Let m be a natural number with m ≠ 0. By m − 1 we denote the

unique natural number k for which k+1 =m. In other words, the natural number

m− 1 is uniquely defined by:

(m− 1)+ 1 =m

The recursive definition of addition of natural numbers is as follows [see Ex-

ample 1.2.10 (2)].

Definition 4. For each m ∈ N:
{

m+ 0 =m

m+ (n+ 1) = (m+n)+ 1 (n ∈ N)

Proposition 5. Addition in N is associative and commutative.

Proof. See Exercises 1.2.11 (a)–(c).

The “strict” order relation < in N and the associated “weak” order relation ≤

in N are defined as follows [see Exercise 1.2.11 (2)]:

Definition 6. Let m,n ∈ N. Then m < n is defined to mean there exists some

d ∈ N∗ for which m+ d = n. And m ≤ n is defined to mean m < n or m = n.

Remark. Let m,n ∈ N . Then m ≤ n if and only if there exists some d ∈ N for

which m+ d = n.
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Lemma 7. The relation < in N has the properties:

1. (transitivity) For all m,n,k ∈ N, if m < n and n < k, then m < k.

2. (irreflexivity) For all m ∈ N, we have m 6<m.

3. (asymmetry) for all m,n ∈ N, if m < n, then n 6<m.

Proof. 1. Let m,n,k ∈ N with m < n and n < k. There exists, t ∈ N∗ for

which m + s = n and n + t = k, respectively. Then m + (s + t) = k. Of

course s + t ∈ N. Moreover, s + t ≠ 0. In fact, s + t = s +
(

(t − 1) + 1
)

=
(

s + (t − 1)
)

+ 1 ≠ 0 because it is the successor of a natural number. [Here

we used the Peano Postulate that 0 ∉ σ(N).]

2. This is an exercise.

3. Let m,n ∈ N with m < n. Just suppose n < m. By transitivity, m < m.

But this contradicts irreflexivity.

Lemma 8. The weak relation ≤ in N is a partial ordering of N.

Proof. First, ≤ is reflexive: m ∈ N implies m ≤m because, in fact, m =m.

Second, ≤ is transitive: this is an easy consequence of transitivity of <.

Third, ≤ is antisymmetric: Let m,n ∈ N with m ≤ n and n ≤ m. Just

suppose, though, that m ≠ n. Since m ≤ n, then m < n; similarly, n < m. This

contradicts irreflexivity of < (Lemma ).

The next result says that addition of natural numbers “preserves order”. [The

first part is Exercise 1.2.11 (2).]

Proposition 9. Let m,n ∈ N. Then:

m ≤ n =⇒ m+ k ≤ n+ k for all k ∈ N,

m < n =⇒ m+ k < n+ k for all k ∈ N.

Proof. Assume m < n. By definition, there exists d ∈ N∗ with m+ d = n. Then

for each k ∈ N, we have (m+k)+d = (m+d)+k = n+k and so m+k < n+k

by definition of < again.

The proof of the result about m ≤ n is left as an exercise.

Proposition 10. The relation ≤ is a total ordering of N.

Proof. According to Lemma 8, already ≤ partially orders N. It remains only to

prove that ≤ has the comparability property: m,n ∈ N =⇒m ≤ n or n ≤m. We

use induction on n to prove that, for each n ∈ N:

(∀m ∈ N)(m ≤ n or n ≤m) (*)

Base step (n = 0) : If m ∈ N, then m = 0+m so that 0 ≤m.

Inductive step: Let n ∈ N an assume (*). Let m ∈ N. We wish to deduce that

m ≤ n+ 1 or n+ 1 ≤m.
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If m = 0, then already m = 0 ≤ n+ 1.

Now suppose m ≠ 0. There exists k ∈ N with m = k + 1. By the inductive

assumption, k ≤ n or n ≤ k. If, on the one hand, k ≤ n, then m = k+ 1 ≤ n+ 1

and so m ≤ n+ 1. If, on the other hand, n < k, then n+ 1 < k+ 1 =m, so that

n+ 1 <m, and a fortiori n+ 1 ≤m.

Lemma 11. For each natural number n, we have n 6< 0.

Proof. Just suppose there is some natural number n for which n < 0. By defini-

tion of <, this means there is some k ∈ N∗ for which n+ k = 0.

The final lemma here is the crux of the Gap Lemma: there is no natural number

strictly between 0 and 1.

Lemma 12. There exists no natural number n for which 0 < n < 1.

Proof. What is to be proved is ¬(∀n ∈ N)(0 < n < 1). Now 0 < n < 1 means

0 < n &n < 1. Thus what is to be proved is, equivalently:

(∀n ∈ N)(n ≤ 0 or 1 ≤ n)

We use induction on n.

Base step (n = 0) : Since 0 ≤ 0, certainly 0 ≤ 0 or 1 ≤ 0.

Inductive step: Now let n ∈ N and assume n ≤ 0 or 1 ≤ n. There are two

cases.

Case (i): n ≤ 0. In this case, by the preceding lemma n = 0. Then 1 = n+ 1,

which means 1 ≤ n+ 1.

Case (ii): 1 ≤ n. In this case, also 1 ≤ n+ 1.

Thus in either case actually 1 ≤ n+ 1.

Proof of Gap Lemma. We shall prove, equivalently, that, for each m ∈ N:

(∀n ∈ N)(n ≤m or m+ 1 ≤ n).

(Compare the logical analysis at the start of the proof of the preceding lemma.)

We use induction on m.

Base step (m = 0) : This is the assertion of Lemma 12

Inductive step: Now let m ∈ N and assume

(∀n ∈ N)(n ≤m or m+ 1 ≤ n). (**)

We want to deduce (∀n ∈ N)(n ≤ m + 1 or m + 1 ≤ n). Let n ∈ N. By the

inductive assumption (**), n ≤m or m + 1 ≤ n. There are two cases. If, on the

one hand, n ≤ m, then certainly n ≤ m + 1. If, on the other hand, m + 1 ≤ n,

then also m + 1 ≤ n + 1. Thus in either case n ≤ m + 1 or m + 1 ≤ n. This

completes the proof of the inductive step.


