The exam covers the material from Problem Sets 9–10 and involves the following content.

- Fermat's Little Theorem: Section 2.4, items 2.4.29–2.4.18 and 2.4.29–2.4.32
- Congruence classes and \mathbb{Z}_m : Section 2.5
- Equivalence relations and partitions: Sections C.1–C.2 through C.2.6.
- The ordered field \mathbb{R} and its Archimedean Ordering Property, Nested Interval Property, and their consequences: note "The Real Numbers" (see also material from sections 3.1 and 3.2 covered in lecture)
- Finite and infinite sets: Chapter 4 through section 4.2 and as much of section 4.3 as covered through Tuesday, Dec. 11.

Define:

- A congruence class modulo m (where m is an integer > 1).
- The set \mathbb{Z}_m .
- The sum A + B and the product $A \cdot B$ of two elements A and B of \mathbb{Z}_m .
- An equivalence relation \sim on a set X.
- A partition of a set X.
- For an equivalence relation \sim on a set X, the quotient set X/\sim .
- For sets A and $B, A \approx B$.
- A set is finite; a set is infinite; a set is denumerable; a set is countable; a set is uncountable.
- For a finite set A, #(A).
- The product $\prod_{i \in I} A_i$ of a family $(A_i)_{i \in I}$ of sets.
- The set A^I for sets A and I; the set 2^I for a set I.
- For sets A and B: $A \preccurlyeq B, A \prec B$.
- For a set A, card $(A) = \aleph_0$.
- For sets A and B: card(A) = card(B); $card(A) \le card(B)$; card(A) < card(B)

State:

- Fermat's Little Theorem
- The Archimedean Ordering Property of \mathbb{R} .
- The Nested Interval Property of \mathbb{R} .
- Cantor's Theorem.

Calculate, list, or give explicitly:

- The set of elements of the congruence class $[3] \in \mathbb{Z}_7$.
- The addition table for \mathbb{Z}_4 ; the multiplication table for \mathbb{Z}_3 .
- If E is the set of all even integers and O is the set of all odd integers, the equivalence relation
 ~ on Z for which the quotient set Z/ ~ is {E, O}.
- The sets $\bigcup_{i=2}^{\infty} [1/i, 1-1/i]$, $\bigcup_{i=2}^{\infty} (1/i, 1-1/i)$, $\bigcap_{i=2}^{\infty} [1/i, 1-1/i]$, and $\bigcap_{i=2}^{\infty} (1/i, 1-1/i)$. (Corrected.)
- Several different sets that match \mathbb{N} .
- Several different sets that match \mathbb{R} .

Complete each statement:

- The union of two finite sets is
- If A has some denumerable subset, then \ldots
- The union of two denumerable sets is
- If A has some infinite subset, then
- The union of a finite set and a denumerable set is

Prove:

- 1. For $A, B \in \mathbb{Z}_m, A \cap B \neq \emptyset \iff A = B$.
- 2. Addition in \mathbb{Z}_m is commutative; multiplication in \mathbb{Z}_m is distributive over addition, that is, $A \cdot (B+C) = A \cdot B + A \cdot C$ for all $A, B, C \in \mathbb{Z}_m$.
- 3. The integer m > 1 is prime if and only if for each $A \in \mathbb{Z}_m$ with $A \neq [0]$, there exists $B \in \mathbb{Z}_m$ with $A \cdot B = [1]$.
- 4. If \sim is an equivalence relation on a set X, then the set of all its equivalence classes is a partition of X.
- 5. For each real $\varepsilon > 0$, there exists a positive integer n with $1/n < \varepsilon$.
- 6. If $x \in \mathbb{R}$ with $x \ge 0$, then there exists a unique integer n such that $n \le x < n+1$.
- 7. The set \mathbb{Q} is order dense in \mathbb{R} .
- 8. $\{1,2\} \not\approx \{1\}$.
- 9. The union of two disjoint finite sets is finite.
- 10. Any subset of a finite set is finite.
- 11. The union of finitely many finite sets is finite.
- 12. The product of two finite sets is finite.
- 13. If A is finite and if there exists a surjection $f: A \to B$, then B is finite.

- 14. For each positive integer $n, \{1, 2, \ldots, n+1\} \not\approx \{1, 2, \ldots, n\}$.
- 15. The set \mathbb{N} is infinite.
- 16. An infinite subset of a countable set is denumerable.
- 17. Each infinite set has a denumerable subset.
- 18. A set A is infinite if and only if $A \approx C$ for some $C \subset A$ with $C \neq A$.
- 19. If A is countable and if there exists a surjection $f: A \to B$, then B is countable.
- 20. The set $\mathbb{N} \times \mathbb{N}$ is denumerable.
- 21. The set \mathbb{Z} is denumerable.
- 22. The set \mathbb{Q} is denumerable.
- 23. The product of two denumerable sets is denumerable.
- 24. The union of two denumerable sets is denumerable.
- 25. The union of countably many denumerable sets is denumerable (except in the trivial case that it is empty).
- 26. Any two closed intervals [a, b] and [c, d] match one another.
- 27. For any set $X, X \prec \mathcal{P}(X)$.
- 28. $(0,1) \approx \mathbb{R}$.
- 29. The closed interval [0, 1] in \mathbb{R} is uncountable.
- 30. The set \mathbb{R} is uncountable.
- 31. The set of all irrational numbers is uncountable.
- 32. The plane $\mathbb{R} \times \mathbb{R}$ is uncountable.

Give an example of the following or else explain why none exists:

- A relation in \mathbb{Z} that is *not* an equivalence relation.
- A set X and a subset \mathcal{A} of $\mathcal{P}(X)$ with $X = \bigcup_{A \in \mathcal{A}} A = X$ and $\emptyset \notin \mathcal{A}$ but \mathcal{A} is *not* a partition of X.
- An infinite set that is not denumerable.
- A denumerable set that is not infinite.
- A denumerable set A and a denumerable subset B of A with $B \neq A$ but $A \setminus B$ is still denumerable.
- An uncountable set.
- An uncountable set whose cardinality is not the same as the cardinality of \mathbb{R} .

Which of the following relations are equivalence relations?

- 1. In the set \mathbb{R} , let $x \sim y$ mean $y x \in \mathbb{Z}$. Also, if \sim is an equivalence relation, what are [1] and $\sqrt{2}$?
- 2. In the set \mathbb{R} , let $x \sim y$ mean $x^2 = y^2$. Also, if \sim is an equivalence relation, what are [1] and $\sqrt{2}$?
- 3. In the set $\mathcal{P}(\mathbb{Z})$, let $A \sim B$ mean $A \cap B \neq \emptyset$. Also, if \sim is an equivalence relation, what is $[\{1\}]$?
- 4. In $\mathbb{Z} \times \mathbb{Z}$, let $(m, n) \sim (i, j)$ mean m j = n i. Also, if \sim is an equivalence relation, what are [(1, 2)] and [(2, 3)]?