Math 300.2

- 1. (a) [6%] For every $c \in \mathbb{R}$ and for every $\varepsilon \in \mathbb{R}$ with $\varepsilon > 0$, there exists some nonnegative integer n such that $n \varepsilon > c$.
 - (b) [7%] In the Archimedean Ordering Property, take $\varepsilon = 1$ to obtain a nonnegative integer n with $n = n \cdot 1 > c$. Now let k = n + 1 to ensure that k is actually a positive integer.
 - (c) [7%] According to (b), there exists some positive integer k such that k > c. By the Well-Ordering Principle, there exists a least such k; call it k_1 . Define

$$n = k_1 - 1.$$

Then n is a nonnegative integer (because k_1 is a positive integer). We consider two cases.

Case 1: (n = 0). In this case, $1 = k_1 > c$ and so already $0 \le c < 0+1 = 1$. Case 2: (n > 0). Suppose now n > 0, that is, n is a positive integer. Since $n < k_1$ and k_1 is the *least* positive integer k for which k > c, then $n \ge c$, so that $n \le c$. Thus $n \le c < k_1 = n + 1$. \Box

2. (a) [10%] Take, for example, m = 4, A = [2]. Then $A \neq [0]$. Moreover,

 $[2][0] = [0], \quad [2][1] = [2], \quad [2][3] = [6] = [2], \quad [2][4] = [8] = [0].$

Thus $A \cdot B \neq [1]$ for all $B \in \mathbb{Z}_4$.

(b) [10%] In view of Cantor's Theorem, the power set $X = \mathcal{P}(\mathbb{R})$ has $\operatorname{card}(X) > \operatorname{card}(\mathbb{R})$. Or take $X = 2^{\mathbb{R}}$, which has the same cardinality as $\mathcal{P}(\mathbb{R})$.

(Note: $\mathbb{R} \times \mathbb{R}$ would *not* be correct: it has the same cardinality as does \mathbb{R} !)

- 3. (a) [5%] The set A is said to be finite when $A = \emptyset$ or else there is some positive integer n such that $\{1, 2, ..., n\} \approx A$ (in other words, there exists some bijection $\{1, 2, ..., n\} \rightarrow A$).
 - (b) [15%] Assume A is finite and $b \notin A$. If $A = \emptyset$, then $A \cup \{b\} = \{b\} \approx \{1\}$, which is finite. [2%]

Suppose now that $A \neq \emptyset$. Then there exists some positive integer n and some bijection $f: \{1, 2, ..., n\} \to A$. [3%] Define

$$g \colon \{1, 2, \dots, n, n+1\} \to A \cup \{b\}$$

to be the extension of f for which g(n+1) = b; in other words,

$$g(k) = \begin{cases} f(k) & \text{if } 1 \le k \le n, \\ b & \text{if } k = n+1. \end{cases}$$
 [8%]

We shall show that g is a bijection.

The map g is surjective because $g(\{1, 2, ..., n\}) = f(\{1, 2, ..., n\}) = A$ and g(n + 1) = b. [1%]

The map g is injective because f is injective and because if $1 \le k \le n$, then $g(k) = f(k) \in A$ whereas $g(n+1) = b \notin A$. [1%] 4. (a) [10%] The idea is to map $0, 2, 4, 6, \ldots$ to $0, 1, 3, 5, \ldots$, respectively and to map $1, 3, 5, \ldots$ to $-1, -2, -3, \ldots$, respectively. Define $f \colon \mathbb{N} \to \mathbb{Z}$ by:

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even,} \\ -(n+1)/2 & \text{if } n \text{ is odd.} \end{cases}$$
[8%]

(This does really define a map into \mathbb{Z} . For if n is even, then n/2 is an integer—a nonnegative integer, in fact; and if n is odd, then n+1 is even so that -(n+1)/2 is an integer—a negative integer, in fact.)

We show that f is injective. Let $m, n \in \mathbb{N}$ with $m \neq n$. Clearly $f(m) \neq f(n)$ in case m and n are both even or both odd. Suppose now that m is even but n is odd. Then $f(m) \geq 0$ whereas f(n) < 0, and so $f(m) \neq f(n)$. Similarly if m is odd but n is even. [1%]

We show that f is surjective. Let $m \in \mathbb{Z}$. If, on the one hand, $m \ge 0$, then $2m \in \mathbb{N}$ with f(2m) = m since 2m is even. If, on the other hand, m < 0, then $-(2m+1) \in \mathbb{N}$ with f(-(2m+1)) = m since -(2m+1) odd. [1%]

Instead of defining f, you could have defined its inverse $g: \mathbb{Z} \to \mathbb{N}$ by

$$g(m) = \begin{cases} 2m & \text{if } m \ge 0, \\ -(2m+1) & \text{if } m < 0, \end{cases}$$

and verified that g is bijective.

- (b) **[10%]**
 - Since Z ≈ N, then Z* ≈ N* ≈ N, whence Z* is also denumerable.
 [1%]
 - The product Z × Z* of the two denumerable sets Z and Z* is also denumerable.
 [2%]
 - The map $f: \mathbb{Z} \times \mathbb{Z}^* \to \mathbb{Q}$ given by f(m, n) = m/n is surjective (in view of what is meant by a rational number. [3%]

[*Note:* The map f is definitely not bijective! E.g., f(3, 6) = 1/2 = f(1, 2).]

- A proposition says that the range \mathbb{Q} of the map f is *countable*. [2%]
- But \mathbb{Q} is infinite (since, e.g., it contains the infinite set \mathbb{N}). [2%]

Since \mathbb{Q} is countable but infinite, it is denumerable. \Box

- 5. (a) **[5%]**
 - (i) (reflexive) for each $x \in X$, $x \sim x$; [1%]
 - (ii) (symmetric) for all $x, y \in X$, if $x \sim y$, then $y \sim x$; [2%] and
 - (iii) (transitive) for all $x, y, z \in X$, if $x \sim y$ and $y \sim z$, then $x \sim z$. [2%]
 - (b) [5%] The equivalence class $[x] = \{ y \in X : x \sim y \}.$
 - (c) [10%] We have A = [a] and B = [b].
 - Just suppose $A \cap B$ is nonempty. Then there exists some $c \in A \cap B$. [2%]
 - We show A ⊂ B. Let x ∈ A. Then a ~ x. [1%] Since also c ∈ A, then a ~ c. By symmetry, c ~ a. By transitivity, c ~ x. [3%]

- But $c \in B$, also, so $b \sim c$. By transitivity, $b \sim x$. This means that $x \in [b] = B$, as desired. Thus $A \subset B$. [3%]
- Similarly, $B \subset A$, and thus A = B. [1%]