Math 300.2 Exam 2 Answers November 15, 2007

1. (a) [5%)] For every integer m, there exist unique integers q and r [2.5%] such
that m =5¢ +r and 0 < r < 5. [2.5%)]

(b) [8%)]

Proof. Assume 5| m

2. Write m = 5q +r with ¢ and r as in (a). Then

m? = (5q+71)> =25¢* +10qr + 12 =5(5¢* +2qr) + 2. [2%]

Since 5 divides both m? and 5(5 ¢* + 2 qr), it divides their difference 2.
[2%] Now r = 0,1,2,3, or 4 so that 72 is one of

02=0, 12=1, 22=4, 32=9, 4*=16. [1%]
But 5 does not divide any of these numbers except 0, so that r? = 0.

[2%] Then r =0, and m = 5¢q + 0 = 5¢. Thus 5 divides m. [1%] O
(c) [7%] Proof. Just suppose v/5 is rational, so that

\/5:E (*)

n

for some integers m and n with n # 0. [2%]

Without loss of generality, we may assume that m and n are relatively
prime (if they are not, divide each by their ged). [2%)]
Square (*) to obtain

5n? =m? 1%)]

Since 5 divides 5n?, it also divides m2. [1%] From (b), 5 divides m.
[1%] ...

2. (a) [10%)] Proof: Assume a+ ¢ =b+c (mod m). [1%] Then
m| ((a+c)— (b+c)) [3%]
and, since (a+¢) — (b+c) = a — b, [3%]
ml(a—b). [2%]

This means a = b (mod m).[1%] O
(b) [10%] The implication is not true in general. [2%)]
Take, for example, m = 2 and take a = 2,b = 3,¢ = 4. [6%] Then
2-4=3-4 (mod 2) and 4 # 0, but 213 (mod 2). [2%)]
3. (a) [5%)] Integer n > 1 is not prime when there exists an integer d such that
d|nbut d+#1and d#n.

(b) [56%] Well-Ordering Principle: Each nonempty subset of N has a least
element.



()

[10%)] Proof: We are going to use the Well-Ordering Principle. Let

A={ne€Z:n>1 & n has no prime divisor }. [2%]

Just suppose some integer greater than 1 has no prime divisor, in other
words, A is nonempty. [1%]

By the Well-Ordering Principle, A has a least element ny. [1%)]

Since nq has no prime divisor, then in particular, n; itself is not prime.
[1%] This means that ny has a divisor d with 1 < d < n;. [2%)]
Because d > 1 and d < nq, the least element of A, then d ¢ A. This
means that d has some prime divisor p. Then p | d and, since d | nj, then
also p | ny. This is impossible because n; € A. [3%] O

[5%] Define:
a® =1, [1%]
a"tl = qaa” (n>0) [4%]

ntl — " g as the recursive relation,

[Note: You could equally well take a
and then you would need to alter some of the steps in (b). You could
also take as the recursive relation a™ = aa™ ! for n € N*, but in view of
the induction done in (b), it’s easier to use the "' = ... form.]

[15%)] Fix n € N. We use induction on m to prove that a™*" = a™ "
for all n € N.[2%)]
Base step (m = 0): For every n € N, a®™ =a" =1-a" = a’ a" [3%)]

Inductive step: Let m € N and assume
a™t" = g™ g" for all n e N.  [2%)]

(What must be deduced is that o™+ = ¢m+1 g" for all n € N. [2%)])
Let n € N. Then:

am+i+n — gm+(ntl) (by properties of addition in Z) [
=a"a" ! (by the inductive assumption) [
=ad"(aa" (by the recursive definition) [
= (aa™)a" (by properties of multiplication in R) |
=a" " (by the recursive definition again) [ |

Notes:

e The value of n was fixed in the proof above, so that the predicate
P(m) being proved by induction is a™t™ = @™ a™, where n is that
fixed value. If you do not fix n, then the predicate P(m) to be proved
by induction would be that a™™" = a™a™ for all n € N—and you
should explicitly say so.

e You could carry out the induction on n instead of on m.
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5.

(a)

[5%] The set A of all even integers is infinite and differenced. (More
generally: any nonzero ideal in Z; in other words, for any integer g # 0,
the ideal {kg:k € Z}.)

[56%] The set A of all odd integers is infinite, but it is not differenced.
(Another example: the subset N of Z.)

[10%)] First, since A has some element k and 0 = k — k, then

0cA  [3%] (1)

[Note: The preceding needs to be a separate step. It is not enough to
start something like this: “Let m,n € A. Then 0 = m —m € A.” The
trouble with that is that you don’t have any particular element of A yet;
you explicitly have to invoke that A is nonempty to get such.]

Next, for each n € A, its negative
—n=0-neA [3%] (2)

from (??) and the definition of “differenced”.

Finally, for every m,n € A, the sum
m+n=m-—(-n) €A [4%]

from (?7?) and the definition of “differenced)”. [

Another version of the proof: fix m and n at the start. Let m,n € A.
Since m € A, from the definition of “differenced” we have 0 = m—m € A.
Next, since 0 € A and n € A, then —n =0—n € A. Finally, since m € A
and —n € A,

m+n=m—(—n) € A.

Yet another version of the proof. This arrangement of the proof does not
explicitly involve showing that 0 € A. (Thanks, Colette!) Let m,n € A.
Then m — n € A since A is differenced. Next,

—n=(m-—n)—me A,
again since A is differenced. Finally, as above,
m+n=m-—(—n) € A,

once more because A is differenced. O



