
Math 300.2 Exam 2 Answers November 15, 2007

1. (a) [5%] For every integer m, there exist unique integers q and r [2.5%] such
that m = 5q + r and 0 ≤ r < 5. [2.5%]

(b) [8%]

Proof. Assume 5 | m2. Write m = 5q + r with q and r as in (a). Then

m2 = (5 q + r)2 = 25 q2 + 10 qr + r2 = 5(5 q2 + 2 qr) + r2. [2%]

Since 5 divides both m2 and 5(5 q2 + 2 qr), it divides their difference r2.
[2%] Now r = 0, 1, 2, 3, or 4 so that r2 is one of

02 = 0, 12 = 1, 22 = 4, 32 = 9, 42 = 16. [1%]

But 5 does not divide any of these numbers except 0, so that r2 = 0.
[2%] Then r = 0, and m = 5 q + 0 = 5 q. Thus 5 divides m. [1%]

(c) [7%] Proof. Just suppose
√

5 is rational, so that

√
5 =

m

n
(*)

for some integers m and n with n 6= 0. [2%]

Without loss of generality, we may assume that m and n are relatively
prime (if they are not, divide each by their gcd). [2%]

Square (*) to obtain

5 n2 = m2. [1%]

Since 5 divides 5n2, it also divides m2. [1%] From (b), 5 divides m.
[1%] . . .

2. (a) [10%] Proof: Assume a + c ≡ b + c (mod m). [1%] Then

m |
(

(a + c) − (b + c)
)

[3%]

and, since (a + c) − (b + c) = a − b, [3%]

m | (a − b). [2%]

This means a ≡ b (mod m).[1%]

(b) [10%] The implication is not true in general. [2%]

Take, for example, m = 2 and take a = 2, b = 3, c = 4. [6%] Then
2 · 4 ≡ 3 · 4 (mod 2) and 4 6= 0, but 2 ∤ 3 (mod 2). [2%]

3. (a) [5%] Integer n > 1 is not prime when there exists an integer d such that
d | n but d 6= 1 and d 6= n.

(b) [5%] Well-Ordering Principle: Each nonempty subset of N has a least
element.



(c) [10%] Proof: We are going to use the Well-Ordering Principle. Let

A = { n ∈ Z : n > 1 & n has no prime divisor }. [2%]

Just suppose some integer greater than 1 has no prime divisor, in other
words, A is nonempty. [1%]

By the Well-Ordering Principle, A has a least element n1. [1%]

Since n1 has no prime divisor, then in particular, n1 itself is not prime.
[1%] This means that n1 has a divisor d with 1 < d < n1. [2%]

Because d > 1 and d < n1, the least element of A, then d /∈ A. This
means that d has some prime divisor p. Then p | d and, since d | n1, then
also p | n1. This is impossible because n1 ∈ A. [3%]

4. (a) [5%] Define:

{

a0 = 1, [1%]

an+1 = a an (n ≥ 0) [4%]

[Note: You could equally well take an+1 = an a as the recursive relation,
and then you would need to alter some of the steps in (b). You could
also take as the recursive relation an = a an−1 for n ∈ N∗, but in view of
the induction done in (b), it’s easier to use the an+1 = . . . form.]

(b) [15%] Fix n ∈ N. We use induction on m to prove that am+n = am an

for all n ∈ N.[2%]

Base step (m = 0): For every n ∈ N, a0+n = an = 1 · an = a0 an [3%]

Inductive step: Let m ∈ N and assume

am+n = am an for all n ∈ N. [2%]

(What must be deduced is that a(m+1)+n = am+1 an for all n ∈ N. [2%])

Let n ∈ N. Then:

a(m+1)+n = am+(n+1) (by properties of addition in Z) [1%]

= am an+1 (by the inductive assumption) [2%]

= am (a an) (by the recursive definition) [1%]

= (a am) an (by properties of multiplication in R) [1%]

= am+1 an (by the recursive definition again) [1%]

Notes:

• The value of n was fixed in the proof above, so that the predicate
P (m) being proved by induction is am+n = am an, where n is that
fixed value. If you do not fix n, then the predicate P (m) to be proved
by induction would be that am+n = am an for all n ∈ N—and you
should explicitly say so.

• You could carry out the induction on n instead of on m.
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5. (a) [5%] The set A of all even integers is infinite and differenced. (More
generally: any nonzero ideal in Z; in other words, for any integer g 6= 0,
the ideal { k g : k ∈ Z }.)

(b) [5%] The set A of all odd integers is infinite, but it is not differenced.
(Another example: the subset N of Z.)

(c) [10%] First, since A has some element k and 0 = k − k, then

0 ∈ A. [3%] (1)

[Note: The preceding needs to be a separate step. It is not enough to
start something like this: “Let m, n ∈ A. Then 0 = m − m ∈ A.” The
trouble with that is that you don’t have any particular element of A yet;
you explicitly have to invoke that A is nonempty to get such.]

Next, for each n ∈ A, its negative

−n = 0 − n ∈ A [3%] (2)

from (??) and the definition of “differenced”.

Finally, for every m, n ∈ A, the sum

m + n = m − (−n) ∈ A [4%]

from (??) and the definition of “differenced)”.

Another version of the proof: fix m and n at the start. Let m, n ∈ A.
Since m ∈ A, from the definition of “differenced” we have 0 = m−m ∈ A.
Next, since 0 ∈ A and n ∈ A, then −n = 0−n ∈ A. Finally, since m ∈ A
and −n ∈ A,

m + n = m − (−n) ∈ A.

Yet another version of the proof. This arrangement of the proof does not
explicitly involve showing that 0 ∈ A. (Thanks, Colette!) Let m, n ∈ A.
Then m − n ∈ A since A is differenced. Next,

−n = (m − n) − m ∈ A,

again since A is differenced. Finally, as above,

m + n = m − (−n) ∈ A,

once more because A is differenced.
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