1. (a) Construct the truth table for the logical formula

 $((\neg P) \text{ or } Q) \iff (P \Longrightarrow Q)$

- (b) According to the truth table, is that logical formula a tautology? Why or why not?
- 2. (a) State *in words*, as simply as possible, the meaning of:

 $(\forall m \in \mathbb{N}) \ (\exists n \in \mathbb{N}) \ (m < n)$

- (b) Using words and/or symbols, form the negation (that is, the denial) of the statement shown in (a). Do *not* use 'not' or 'no', any synonym for 'not' or 'no', or any symbol for 'not' or 'no' in your answer!
- (c) Tell which one is true—the statement in (a) or its negation in (b)—and indicate why it is true.
- 3. If $X = \{1, 2, 3\}$ and if $Y = \{z, w\}$ with $z \neq w$, then:
 - (a) List all the elements of $\mathcal{P}(X)$.
 - (b) List all the elements of $X \times Y$.
 - (c) How many *injective* functions are there from X to Y? Why?
- 4. Let A, B, and C be subsets of a set X. Complete each statement and then prove it:
 - (a) According to one of the distributive laws, $A \cup (B \cap C) =$
 - (b) According to one of **De Morgan's** Laws, $X \setminus (A \cup B) =$
- 5. Let A and B be subsets of a set X. Prove that $A \subset B$ if and only if $A \cup B = B$.
- 6. What is the definition that a relation R in a set X be **transitive**?
- 7. (a) Give an example of a function $f: \mathbb{Z} \to \mathbb{Z}$ that is surjective but not injective.
 - (b) Let $f: A \to B$ and $g: B \to C$ be functions such that $g \circ f$ is surjective. Prove that g is surjective.
- 8. (a) Let $f: X \to Y$ be a function and let D and E be subsets of Y. Prove that

$$f^{-1}(D \cup E) \subset f^{-1}(D) \cup f^{-1}(E).$$

- (b) Must equality hold in (a)? If so, prove that it does. If not, give a counterexample.
- 9. Recall that a positive integer m is odd when it is not even, and then such m = 2j 1 for some positive integer j.

Use mathematical induction to prove that, for every n = 1, 2, 3, ..., the sum of the first n odd positive integers is n^2 .

10. Recall that, by definition, an integer m is divisible by a positive integer d when there exists some integer k for which m = dk.

Use mathematical induction to prove that, for every positive integer n,

 $5^{2n-1} + 1$ is divisible by 6.

11. State the Peano Postulates about 0, \mathbb{N} , and the successor function $\sigma \colon \mathbb{N} \to \mathbb{N}$.