Exam 1 Answers

1. (a) [6%] Let A, B, and X be sets. Then (either one of):

 $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$ $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$

- (b) [6%] A partial ordering R of X is a **total** ordering when: for each $x \in X$ and each $y \in X$, we have xRy or yRx.
- (c) [6%] If $I \subset \mathbb{N}$, if $0 \in I$, and if $(\forall n)(n \in I \Longrightarrow n+1 \in I)$, then $I = \mathbb{N}$.
- 2. (a) [8%] Method 1: Use a truth table. The truth table is as follows: [6%]

P	Q	$\neg P$	$P ext{ or } Q$	$\neg P \& (P \text{ or } Q)$	Q	$ (\neg P \& (P \text{ or } Q)) \implies Q$
T	T	F	Т	F	T	T
T	F	F	T	F	F	T
F	T	T	T	T	T	T
F	F	T	F	F	F	T

The formula is a tautology, because the last column in its truth table consists solely of T's. [2%]

Method 2: Use known tautologies. We have: [3%]

$$\left(\neg P \& (P \text{ or } Q)\right) \iff \left((\neg P \& P) \text{ or } (\neg P \& Q)\right) \quad (\text{distributive law}) \\ \iff (\neg P \& Q) \qquad (\text{since } \neg P \& P \text{ is false})$$

But $(R \& Q) \Longrightarrow Q$ is a tautology so that, in particular, $(\neg P \& Q) \Longrightarrow Q$ is a tautology. [3%] Hence the given formula is a tautology. [2%]

- (b) [8%] The statement is **true**. [2%] Indeed, $(\forall n \in \mathbb{N}) (\exists k \in \mathbb{N}) (k > n)$ means that, for each natural number n, there is some natural number greater than n. And that is true because, for each $n \in \mathbb{N}$, we have $n+1 \in \mathbb{N}$ and n+1 > n. [6%]
- 3. Let $A = \{1, 2\}$ and $B = \{u, v, w\}$ with $u \neq v, v \neq w$, and $u \neq w$.
 - (a) [6%] A × B = {(1, u), (1, v), (1, w), (2, u), (2, v), (2, w)}.
 Note: It would be wrong to use {1, u}, {1, v}, etc., as these are just doubletons—"unordered" sets—whereas elements of the cartesian product A × B are ordered pairs.
 - (b) **[6%]** $\mathcal{P}(B) = \{ \emptyset, \{u\}, \{v\}, \{w\}, \{u, v\}, \{u, w\}, \{v, w\}, B \}.$
 - (c) **[6%]** By definition, $f^{-1}(\{u, v\}) = \{a \in A : f(a) \in (\{u, v\})\}$, so that $f^{-1}(\{u, v\}) = \{a \in A : f(a) = u \text{ or } f(a) = v\} = \{2\}.$

Note: The inverse of a function is not at issue here! (Indeed, f is not bijective.) Rather, the expression $f^{-1}(\{u, v\})$ represents the inverse-image of the set $\{u, v\}$ under the function f.

4. [16%] Assume $A \subset B$. Certainly $A \cap B \subset A$; in fact, if $x \in A \cap B$, then $x \in A$ and $x \in B$, and so in particular $x \in A$. And $A \subset A \cap B$ because if $x \in A$, then from the assumption $A \subset B$ we have also $x \in B$ and so $x \in A \cap B$. Thus $A \cap B = A$. [8%]

Conversely, assume $A \cap B = A$. Let $x \in A$. By the assumption, $x \in A \cap B$ and so, in particular, $x \in B$. Thus $A \subset B$. [8%]

5. (a) [6%] One example is the function $f: \mathbb{Z} \to \mathbb{N}$ given by f(n) = |n|. [This function f is surjective because if $n \in \mathbb{N}$, then also $n \in \mathbb{Z}$ with f(n) = n; the function f is not injective because, for example, f(-1) = 1 = f(1).] Another example is the function $f: \mathbb{Z} \to \mathbb{N}$ given by:

$$f(n) = \begin{cases} 0 & \text{if } n < 0, \\ n & \text{if } n \ge 0. \end{cases}$$

[Note that the function $\mathbb{Z} \to \mathbb{N}$ given by $f(n) = n^2$ is *not* surjective, since its only values are squares! This is quite different from the case of the squaring function $\mathbb{R} \to \mathbb{R}^+$.]

(b) [10%] First method: Let $a_1, a_2 \in A$ with $f(a_1) = f(a_2)$. Then

$$(g \circ f)(a_1) = g(f(a_1)) = g(f(a_2)) = (g \circ f)(a_2).$$

Since $g \circ f$ is injective, it follows that $a_1 = a_2$. \Box Second method" Let $a_1, a_2 \in A$ with $a_1 \neq a_2$. Since $g \circ f$ is injective, then

 $(g \circ f)(a_1) \neq (g \circ f)(a_2).$

But
$$(g \circ f)(a_1) = g(f(a_1))$$
 and $(g \circ f)(a_2) = g(f(a_2))$, so that
 $g(f(a_1)) \neq g(f(a_2)).$

Then $f(a_1) \neq f(a_2)$ by the functionality of g.

6. Base step: [3%] First, $2^{2 \cdot 0} - 1 = 1 - 1 = 0 = 0 \cdot 3$, so that $2^{2 \cdot 0} - 1$ is divisible by 3.

Inductive step: [13%] Now let n be a nonnegative integer and assume that $2^{2n} - 1$ is divisible by 3. [3%]

This assumption means there is some positive integer k for which

$$2^{2n} - 1 = 3k.$$
 [2%] (*)

We want to deduce that $2^{2(n+1)} - 1$ is divisible by 3, too. [2%] Now

$$2^{2(n+1)} - 1 = 2^{2n+2} - 1 = 4 \cdot 2^{2n} - 1.$$

From (*),

$$2^{2n} = 3k + 1.$$

Then

$$2^{2(n+1)} - 1 = 4 \cdot 2^{2n} - 1$$

= 4 (3k + 1) - 1
= 3 (4k) + 3
= 3 (4k + 1). [6%]

It follows that $2^{2(n+1)} - 1$ is divisible by 3, too. \Box