Due date: Monday, March 12, except # 8 due Friday, March 16

- 1. Do page 47, Exercise 10.
- 2. (a) Do page 70, Exercise 4.
 - (b) Answer same question as in (a), but for $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5 \end{bmatrix}.$
- 3. Do page 71, Exercise 28. It's OK to use MATHEMATICA here.
- 4. Do page 72, Exercise 41 (a)–(c) only. Justify your answers!
- 5. Do page 85, Exercise 20. If the formula is true, prove it; if it is not true, give a specific example where it fails.
- 6. Do page 86, Exercise 40.
- 7. (a) Find at least two 2×2 matrices A other than I_2 for which $A^2 = I_2$.
 - (b) Do page 89, Exercise 71.
- 8. (Counts as two problems.) Define a Mathematica function invert that takes as argument a single square $n \times n$ matrix A for arbitrary n (in the usual form of a list of lists) and that returns as result: the inverse of A (in the form of a list of lists) in case A is invertible but Null in case A is not invertible. For example:

```
invert[{{1, 3}, {2, 5}}]
{{-5, 3}, {2, -1}}

invert[{{1, 3}, {2, 6}}]
(* no result is produced, since the result is Null *)
```

The method to use is to join the identity matrix to the argument and use the reduced row-echelon form of the result. Some relevant MATHEMATICA functions are:

- The built-in function IdentityMatrix.
- For joining one matrix alongside another, the function AppendRows in the Standard AddOn package LinearAlgebra'MatrixManipulation'. (Don't let the name of this function confuse you: you are appending rows of one matrix to the rows of another matrix.) To load the package, use Needs or Get or the abbreviation <<.
- For obtaining the reduced row-echelon form, the built-in function RowReduce (which is more reliable than GJ). Thus you do *not* need scale, swap, addrow, or roundoff.
- For extracting blocks of columns of a matrix, index using All as the first argument.

• For comparing things, the built-in function === (that's three equal signs in a row), which is an abbreviation for SameQ; this is instead of the built-in function == (that's two equal signs in a row), which is an abbreviation for EqualQ.

While designing and debugging your invert, you may wish to compare its results with those of the built-in function Inverse.

Test your function invert in the manner that is prescribed in the notebook About invert.nb, available from the course web site.

For extra credit: In the case that A is not invertible, invert should also issue an appropriate warning message via the Message mechanism.