To be done but not turned in!

What the text denotes $\mathbb{R}^{m\times n}$ is what we denoted $\mathcal{M}_{m,n}$.

- 1. (a) Do page 157, Exercise 1.
 - (b) Do page 157, Exercise 2.
- 2. Do page 157, Exercise 4 except consider the given set as a subset of \mathcal{P}_3 rather than of \mathcal{P}_2 .
- 3. (a) Do page 157, Exercise 6.
 - (b) Do page 157, Exercise 7.
- 4. (a) Find a basis for the space of all *symmetric* 2×2 matrices, and determine its dimension.
 - (b) Do page 158, Exercise 24.
 - (c) Do page 158, Exercise 25.
- 5. (a) Do page 164, Exercise 3. The transformation T is usually denoted tr, and tr(A) is called the *trace* of the matrix A.
 - (b) Do page 164, Exercise 9.
 - (c) Do page 164, Exercise 13.
- 6. (a) Do page 173, Exercise 1.
 - (b) Do page 173, Exercise 3.
- 7. (a) Do page 174, Exercise 22. The basis of \mathcal{P}_2 here is the usual one.
 - (b) Do page 174, Exercise 38.
- 8. (a) Show that the functions $\cos(t)$, $\sin(t)$, $t\cos(t)$, $t\sin(t)$ are linearly independent. [Hence (b) below makes sense!]
 - (b) Do page 175, Exercise 61 (a).
- 9. Do page 238, Exercise 16.
- 10. Do page 239, Exercise 24.