Speeding up and slowing down

Consider an object moving on a line, with velocity function v(t) and acceleration function a(t). To say the object is **speeding up** means that its speed is increasing; to say it is **slowing down** means that its speed is decreasing.

Now the speed at time t is given by

speed(t) =
$$|v(t)| = \begin{cases} v(t) & \text{if } v(t) > 0, \\ -v(t) & \text{if } v(t) < 0. \end{cases}$$

Hence its rate of change is

$$\frac{d}{dt} \text{speed} = \begin{cases} v'(t) & \text{if } v(t) > 0, \\ -v'(t) & \text{if } v(t) < 0, \end{cases}$$
$$= \begin{cases} a(t) & \text{if } v(t) > 0, \\ -a(t) & \text{if } v(t) < 0. \end{cases}$$

Then

$$\frac{d}{dt} \text{ speed} > 0 \quad \text{if } v(t) > 0 \text{ and } a(t) > 0$$

or if $v(t) < 0$ and $-a(t) > 0$,

that is,

$$\frac{d}{dt} \operatorname{speed} > 0 \quad \text{if } v(t) > 0 \text{ and } a(t) > 0$$

or if $v(t) < 0$ and $a(t) < 0$.

Similarly,

$$\frac{d}{dt} \text{speed} > 0 \quad \text{if } v(t) > 0 \text{ and } a(t) < 0$$

or if $v(t) < 0$ and $-a(t) < 0$,

that is,

$$\frac{d}{dt}$$
 speed < 0 if $v(t) > 0$ and $a(t) < 0$
or if $v(t) < 0$ and $a(t) > 0$.

Thus

$$\frac{d}{dt} \text{ speed} > 0 \quad \text{ if } v(t) \text{ and } a(t) \text{ have the same sign,} \\ \frac{d}{dt} \text{ speed} < 0 \quad \text{ if } v(t) \text{ and } a(t) \text{ have opposite signs.} \end{cases}$$

So this means:

object is speeding up	if $v(t)$ and $a(t)$ have the same sign,
object is slowing down	if $v(t)$ and $a(t)$ have opposite signs.