\qquad

Signature \qquad

Lecturer \qquad Section \# \qquad

> UNIVERSITY OF MASSACHUSETTS AMHERST
> DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 131

Exam 3

November 28, 2007
7:00-8:30 p.m.

Instructions

- Turn off all cell phones and watch alarms! Put away iPods, etc.
- There are six (6) questions.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared.
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- If you use your calculator to do numerical calculations, be sure to show the setup leading to what you are calculating.
- Be ready to show your UMass ID card when you hand in your exam booklet.

QUESTION	PER CENT	SCORE
1	16	
2	20	
3	15	
4	16	
5	16	
6	14	
Free	3	3
TOTAL	100	

1. (a) (4\%) Find all critical numbers of the function $f(x)=x \sqrt{1-x^{2}}$.
(b) (12%) What are the absolute (that is, global) maximum value and the absolute (that is, global) minimum value of $f(x)$ on $[0,1]$, and at which x in $[0,1]$ are those values reached?
(Use appropriate methods from calculus, not estimates obtained by graphing the function.)
2. $(4 \times 5 \%=20 \%)$ The derivative $f^{\prime}(x)$ of a certain function $f(x)$ is given by:

$$
f^{\prime}(x)=x^{4}-3 x^{3}
$$

Use methods of calculus-not a graph plotted by your calculator-to answer the following without finding a formula for $f(x)$ itself. Show work to justify your answers!
(a) Where is $f(x)$ increasing? Where is it decreasing?
(b) Where is $f(x)$ concave upward? Where is it concave downward?
(c) At which x, if any, does f have an inflection point?
(d) At which x, if any, does f have a local maximum? A local minimum?
3. $(3 \times 5 \%=15 \%)$ Use appropriate methods of calculus to find the exact values of the following limits. (Do not use your calculator to estimate the limits.)
(a) $\lim _{x \rightarrow 1} \frac{\ln x}{\cos \left(\frac{\pi}{2} x\right)}$
(b) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{2}}$
(c) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)^{x}$
4. (16\%) The Red Sox are going to construct a wooden case to proudly display their World Series trophy. This box will have a square back and an open front, and it will have a volume of 4,000 cubic inches. What dimensions for the box will minimize the total amount of materials used for its sides and base?

Follow this outline to find your solution:
(a) (2%) Identify the variables involved (maybe draw a picture to help).
(b) (4\%) Determine what function (of a single variable) is to be minimized and on what domain.
(c) (8%) Determine at what number that function takes its minimum value. Be sure to justify why the function actually does take its minimum there!
(d) (2\%) Answer the original question: what are the minimizing dimensions?
5. (16%) A bicyclist is riding directly east on a straight road at a steady rate of $25 \mathrm{ft} / \mathrm{sec}$. A path running perpendicular to the road meets the road at a point in front of the bicyclist. A woman on the path who is north of the east-west road is jogging north along the path at a steady rate of $13 \mathrm{ft} / \mathrm{sec}$.
(a) (4\%) Draw a diagram depicting the situation, carefully labeling all variable quantities.
(b) (12%) How fast is the distance between the bicyclist and the jogger decreasing when the bicyclist is 24 feet from the north-south path and the jogger is 10 feet from the east-west road?
6. (a) (8%) Find the linearization $L(x)=\ldots$ of $\sqrt[4]{x}$ at $a=16$.
(b) (6%) Use this linearization to approximate $\sqrt[4]{14.4}$. Give your answer as a decimal rounded to 3 digits to the right of the decimal point. (Note: The approximation you find need not be the same as the value your calculator gives for $\sqrt[4]{14.4}$.)

This page left blank for additional work.

