DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH 131 Fall 2003 EXAM #2

Your Section Number:	-
Your Instructor's Name:	
Print Your Name:	
Sign Your Name:	
This exam consists of 7 questions. last is a blank page for scratchwork	It has 8 numbered pages, where the
On this exam, you may use a calculano books.	ator and a page of your own notes, but
· ·	ne answers. You must show how you ucted otherwise. If you draw a graph, xis.
Leave the space below empty!	
1. (10)	
2. (15)	
3. (15))
4. (15))
5. (15))
)
)
TOTAL (100)	

1. (10 points) Let $f(x) = e^x + e^{-x}$. Determine $f^{(99)}(x)$ and use it to evaluate $f^{(99)}(5)$.

- 2. Consider the ellipse $4x^2 + y^2 = 16$.
 - a) (10 points) Use implicit differentiation to compute the slope of the tangent line to the ellipse at the point $(\sqrt{3}, 2)$, showing steps.

b) (5 points) Check your result by sketching the graph (with scale marked on each axis) of $y = \sqrt{16-4x^2}$.

3. a) (10 points) Find the derivative $\frac{dy}{dx}$ of the function y, implicitly defined by $x^2+y^3=8$.

b) (5 points) Find all points on the curve $x^2 + y^3 = 8$ where the tangent line is horizontal: dy/dx = 0.

4. Differentiate each function, but do not use logarithmic differentiation and do not simplify results:

a) (7 points)
$$y = \ln(\ln(\ln x))$$

b) (8 points) $y = (x^2 + 3)^{10} \tan(x^2)$

- 5. Let $y = x^2 e^x$.
 - a) (7 points) Use the **product rule** to compute dy/dx.

b) (8 points) Use **logarithmic differentiation** to compute dy/dx.

6. (15 points) An observer, at a fixed distance of 300 meters from the launch pad of a rocket, watches it ascend vertically at 60 meters per second. Find the rate of change of the distance between the rocket and the observer when the rocket is 400 meters high. **Show your steps!**

7. a) (7 points) Find the linearization L(x) of the function $f(x) = e^x$ at the point a = 0.

b) (5 points) Use the linearization to approximate $e^{0.01}$.

c) (3 points) Is this approximation greater than or less than the value produced by a calculator? **Justify your answer.**