\qquad

Signature \qquad

Lecturer

\qquad Section \# \qquad

UNIVERSITY OF MASSACHUSETTS AMHERST
DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 131
Exam 2
October 31, 2007
7:00-8:30 p.m.

Instructions

- Turn off all cell phones and watch alarms! Put away iPods, etc.
- When calculating derivatives in \#1-6, do not "simplify" your answers. But do use enough parentheses to show clearly how expressions are grouped together. For example, do not write $x+2 \cdot x-1$ if you really mean $(x+2)(x-1)$.
- Do not use a calculator; do not use any "cheat sheet" or other paper.
- Organize your work in an unambiguous order. Show all necessary steps.
- Do all work in this exam booklet. You may continue work to backs of pages and the blank page at the end, but if you do so indicate where.
- Be ready to show your UMass ID card when you hand in your exam booklet.

QUESTION	PER CENT	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
TOTAL	100	

1. (10\%) Calculate:

$$
\frac{d}{d x}\left(3 x^{2}+3^{2}\right)=
$$

2. (10\%) Calculate:

$$
\frac{d}{d x} \ln \left(\pi+x^{5}\right)=
$$

3. (10%) Calculate:

$$
\frac{d}{d x}\left(e^{-x} \cos ^{2} x\right)=
$$

4. (10%) Calculate:

$$
\frac{d}{d x}\left(\frac{\sqrt[3]{x^{2}+1}}{4 x+5}\right)=
$$

5. (10\%) Calculate:

$$
\frac{d}{d x}\left(\sqrt{1-x^{2}} \arcsin x\right)=
$$

6. (10\%) Calculate:

$$
\frac{d}{d x} e^{x \ln (\sin x)}=
$$

7. (10\%) An object is moving along the y-axis, starting at time $t=0$. Its coordinate $y(t)$, in feet, at time t, in seconds, is

$$
y(t)=17-5 t+15 t^{3} .
$$

What is the object's acceleration when the object is (momentarily) at rest?
8. (10\%) Find the slope of the the tangent line to the graph of

$$
x^{3}-x^{2} y+3 y^{3}=1
$$

at the point $(x, y)=(-1,1)$.
9. (a) (2%) Recalling that arctan means $\tan ^{-1}$, that is, "inverse of the tangent function," simplify:

```
tan}(\operatorname{arctan}x)
```

(b) (8\%) Starting with the identity you obtained in (a), derive the well-known formula for $\frac{d}{d x}(\arctan x)$.
10. (10\%) The chemical Agent Q decays at a rate proportional to the mass present. A lab starts with 10 kg of Agent Q. After 5 days only 2 kg remains. How much will remain after a total of 7 days (including the original 5 days)?
(Identify the variables you use! Since you may not use a calculator, leave your answer as an exact quantity)

This page left blank for additional work.

