Name (Last, First) ID \# \qquad

Signature

\qquad

Lecturer

\qquad
\qquad

UNIVERSITY OF MASSACHUSETTS AMHERST
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 131
Exam 2
November 1, 2006
7:00-8:30 p.m.

- Turn off all cell phones and watch alarms! Put away iPods, etc.
- When calculating derivatives in \#1-7, do not "simplify" your answers. But do use enough parentheses to show clearly how expressions are grouped together. For example, do not write $x+2 \cdot x-1$ if you really mean $(x+2)(x-1)$.
- Do not use a calculator; do not use any "cheat sheet" or other paper.
- Organize your work in an unambiguous order. Show all necessary steps.
- Do all work in this exam booklet. You may continue work to backs of pages and the blank page at the end, but if you do so indicate where.
- Be ready to show your UMass ID card when you hand in your exam booklet.

QUESTION	PER CENT	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
TOTAL	100	

1. (10\%) Calculate:

$$
\frac{d}{d x}\left(x^{10}-10^{10}+10^{x}\right)=
$$

2. (10%) Calculate:

$$
\frac{d}{d x} \ln \left(x^{3}-1\right)=
$$

3. (10%) Calculate:

$$
\frac{d}{d x}\left(e^{-x} \sin ^{2} x\right)=
$$

4. (10\%) Calculate:

$$
\frac{d}{d x}\left(\frac{\sqrt[3]{x^{2}+1}}{5 x+3}\right)=
$$

5. (10\%) Calculate:

$$
\frac{d}{d x}\left(\sqrt{1+x^{2}} \arctan x\right)=
$$

6. (10\%) Calculate:

$$
\frac{d}{d x}\left[\sec \left(e^{5-4 x^{2}}\right)\right]=
$$

7. (10\%) Calculate:

$$
\frac{d}{d x} e^{x \ln (\tan x)}=
$$

8. (10%) An object is moving along the x-axis. Its coordinate $x(t)$, in feet, at time t, in seconds, is

$$
x(t)=80 t-16 t^{2}+5 t^{3} .
$$

What is the object's acceleration at time $t=2$?
9. (10%) Find an equation for the tangent line to the graph of $2 x^{3}+2 y^{3}=9 x y$ at the point $(x, y)=(1,2)$.
10. (a) (2%) Recalling that arccos means $\cos ^{-1}$, that is, "inverse of the cosine function," simplify:

$$
\cos (\arccos x)=
$$

(b) (8\%) Use the identity you obtained in (a) to derive the formula:

$$
\frac{d}{d x}(\arccos x)=-\frac{1}{\sqrt{1-x^{2}}}
$$

This page left blank for additional work.

