Name (Last, First)
ID \# \qquad

Signature \qquad

Lecturer \qquad Section \# \qquad

UNIVERSITY OF MASSACHUSETTS AMHERST
DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 131
Exam 1
October 3, 2007
7:00-8:30 p.m.

Instructions

- Turn off all cell phones and watch alarms! Put away cell phones, iPods, etc.
- There are six (6) questions.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared.
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- If you use your calculator to do numerical calculations, be sure to show the setup leading to what you are calculating.
- Be prepared to show your UMass ID card when you hand in your exam booklet.

QUESTION	PER CENT	SCORE
1	16	
2	16	
3	16	
4	18	
5	16	
6	15	
Free	3	3
TOTAL	100	

1. $(2 \times 8 \%=16 \%)$ At time t, in seconds, a particle moving along a line has coordinate $s(t)=t^{2}+4 t-2$, in meters.
(a) Calculate the particle's average velocity over the time interval $[3,3.1]$. Give your answer as a single number with appropriate units.
(b) Calculate the particle's average velocity over the time interval $[3,3+\Delta t]$ where $\Delta t>0$. Simplify your answer.
2. Consider $f(x)=\frac{3 x^{2}+1}{x^{2}-9}$.
(a) (8\%) By calculating relevant limits, determine the equations of all vertical asymptotes of the graph of $f(x)$. If there are none, say so.
(b) (8\%) By calculating relevant limits, determine the equations of all horizontal asymptotes of the graph of $f(x)$. If there are none, say so.
3. Let $f(x)=\frac{1}{2 x+3}$.
(a) (10%) Find the slope of the tangent line to the graph of $y=f(x)$ at $x=1$ by computing a relevant limit.
(b) (6\%) Write an equation of the tangent line to the graph of $y=f(x)$ at the point where $x=1$. [If you were unable to complete (a), you may use m to denote the slope of $f(x)$ at $x=1$.]
4. $(3 \times 6 \%=18 \%)$ Determine the following limits. Justify your answers (without reference to any graphs or numbers you might use your calculator to find).
(a) $\lim _{x \rightarrow 0} \frac{2 x^{2}+1}{x^{2}-1}$
(b) $\lim _{\theta \rightarrow \pi} \theta^{2} \cos \theta$
(c) $\lim _{t \rightarrow 1} \frac{e^{t}+1}{e^{t}-1}$
5. (a) (12%) Use the definition of derivative to calculate $\frac{d y}{d x}$ if $y=x^{3}-x$.
(b) (4%) Use your result in (a) to determine $\left.\frac{d y}{d x}\right|_{x=5}$.
6. The function f is defined by

$$
f(x)= \begin{cases}k x & \text { if } x<2, \\ 3 x^{2} & \text { if } 2 \leq x,\end{cases}
$$

where k is a constant.
(a) (8\%) Find a value of the constant k that makes f continuous at $x=2$.
(b) (7\%) For that value of k, is f differentiable at $x=2$? Why or why not?

This page left blank for additional work.

