Name (Last, First) ID \# \qquad

Signature

\qquad

Lecturer

\qquad Section \# \qquad

UNIVERSITY OF MASSACHUSETTS AMHERST
DEPARTMENT OF MATHEMATICS AND STATISTICS
Math 131
Exam 1
October 5, 2006
7:00-8:30 p.m.

Instructions

- Turn off all cell phones and watch alarms!

Put away cell phones, iPods, etc.

- There are six (6) questions.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared.
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- Do not write anything in the table below.
- Be prepared to show your UMass ID card when you hand in your exam booklet.

QUESTION	PER CENT	SCORE
1	16	
2	16	
3	16	
4	16	
5	16	
6	16	
Free	4	4
TOTAL	100	

1. (16%) The number of E. coli bacteria in a Petri dish grows by a constant factor of 16 every hour. At the start of an experiment, there are 1,000 E. coli in the dish.
(a) (4\%) How many E. coli will there be 2 hours later?
(b) (8%) Find a formula for the number $Q(t)$ of E. coli there will be as a function of the time t, in hours, after the start of the experiment.
(c) (4\%) How long will it take for the number of E. coli to reach 1 million? Give your answer to the nearest minute.
2. $(2 \times 8 \%=16 \%)$ At time t, in seconds, the coordinate $s(t)$, in feet, of a particle moving on a line is given by
$s(t)=t^{2}-8 t+18$.
(a) Find the particle's average velocity over each of the following time intervals:
(i) $[4,4.1]$ Calculate your answer as a single number.
(ii) $[4,4+\Delta t]$ where $\Delta t>0$. Simplify your answer.
(b) Find the particle's instantaneous velocity at $t=4$. Use the meaning of velocity in terms of limits.
3. (16%) Let $f(x)=\frac{x+2}{\sqrt{9 x^{2}-1}}$.
(a) (4%) What is the domain of f ?
(b) (6%) By evaluating relevant limits, find an equation of each vertical asymptote of the graph of f. (If there are none, say so!)
(c) (6%) By evaluating relevant limits, find an equation of each horizontal asymptote of the graph of f. (If there are none, say so!)
4. $(2 \times 8 \%=16 \%)$ The functions f and g are defined by:

$$
f(x)=\left\{\begin{array}{ll}
x^{2}+3 x & \text { if } x \neq 1, \\
0 & \text { if } x=1,
\end{array} \quad g(x)= \begin{cases}5-6 x & \text { if } x \neq 1, \\
3 & \text { if } x=1 .\end{cases}\right.
$$

(a) Are f and g continuous at $x=1$? Why or why not?
(b) Is $f+g$ continuous at $x=1$? Why or why not?
5. (16\%) The parts of this question are not related.
(a) (10\%) Use Limit Laws to determine:

$$
\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x-2}
$$

(b) (6\%) Let $f(x)=5 x+4$. so that, of course,

$$
L=\lim _{x \rightarrow 2} f(x)=14 .
$$

For $\epsilon=0.01$, find a corresponding value of δ such that, for all $x \neq 2$:
if $2-\delta<x<2+\delta$, then $L-\epsilon<f(x)<L+\epsilon$
Do this algebraically and without graphing the function.
6. $(2 \times 8 \%=16 \%)$
(a) Use the definition of derivative to find the derivative of $f(x)=\frac{x-1}{x}$.
(b) Find an equation of the tangent line to the graph of $y=\frac{x-1}{x}$ at the point where $x=2$. [In case you were unable to do (a), you may use the fact that $f^{\prime}(2)=1 / 4$.]

This page left blank for additional work.

