Name (Last, First)		ID #	
Signature			
Lecturer		Section #	
	UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS		
Math 131	Exam 1	October 5, 2006	

Instructions

7:00-8:30 p.m.

- Turn off all cell phones and watch alarms! Put away cell phones, iPods, etc.
- There are six (6) questions.
- Do all work in this exam booklet. You may continue work to the backs of pages and the blank page at the end, but if you do so indicate where.
- Do not use any other paper except this exam booklet and the one-page "cheat sheet" that you prepared.
- Organize your work in an unambiguous order. Show all necessary steps.
- Answers given without supporting work may receive 0 credit!
- Do *not* write anything in the table below.
- Be prepared to show your UMass ID card when you hand in your exam booklet.

QUESTION	PER CENT	SCORE
1	16	
2	16	
3	16	
4	16	
5	16	
6	16	
Free	4	4
TOTAL	100	

- 1. (16%) The number of *E. coli* bacteria in a Petri dish grows by a constant factor of 16 every hour. At the start of an experiment, there are 1,000 *E. coli* in the dish.
 - (a) (4%) How many *E. coli* will there be 2 hours later?

(b) (8%) Find a formula for the number Q(t) of *E. coli* there will be as a function of the time t, in hours, after the start of the experiment.

(c) (4%) How long will it take for the number of *E. coli* to reach 1 million? Give your answer to the nearest minute.

2. $(2 \times 8\% = 16\%)$ At time t, in seconds, the coordinate s(t), in feet, of a particle moving on a line is given by

$$s(t) = t^2 - 8t + 18.$$

(a) Find the particle's **average** velocity over each of the following time intervals:

(i) [4, 4.1] Calculate your answer as a single number.

(ii) $[4, 4 + \Delta t]$ where $\Delta t > 0$. Simplify your answer.

(b) Find the particle's instantaneous velocity at t = 4. Use the meaning of velocity in terms of limits.

3. (16%) Let
$$f(x) = \frac{x+2}{\sqrt{9x^2-1}}$$
.

(a) (4%)What is the domain of f?

(b) (6%) By evaluating relevant limits, find an equation of each vertical asymptote of the graph of f. (If there are none, say so!)

(c) (6%) By evaluating relevant limits, find an equation of each horizontal asymptote of the graph of f. (If there are none, say so!)

4. $(2 \times 8\% = 16\%)$ The functions f and g are defined by:

$$f(x) = \begin{cases} x^2 + 3x & \text{if } x \neq 1, \\ 0 & \text{if } x = 1, \end{cases} \qquad g(x) = \begin{cases} 5 - 6x & \text{if } x \neq 1, \\ 3 & \text{if } x = 1. \end{cases}$$

(a) Are f and g continuous at x = 1? Why or why not?

(b) Is f + g continuous at x = 1? Why or why not?

- 5. (16%) The parts of this question are not related.
 - (a) (10%) Use Limit Laws to determine:

$$\lim_{x \to 2} \frac{x^2 + 3x - 10}{x - 2}$$

(b) (6%) Let f(x) = 5x + 4. so that, of course,

$$L = \lim_{x \to 2} f(x) = 14.$$

For $\epsilon = 0.01$, find a corresponding value of δ such that, for all $x \neq 2$:

if $2-\delta < x < 2+\delta$, then $L-\epsilon < f(x) < L+\epsilon$

Do this algebraically and without graphing the function.

6. $(2 \times 8\% = 16\%)$

(a) Use the *definition* of derivative to find the derivative of $f(x) = \frac{x-1}{x}$.

(b) Find an equation of the tangent line to the graph of $y = \frac{x-1}{x}$ at the point where x = 2. [In case you were unable to do (a), you may use the fact that f'(2) = 1/4.]

This page left blank for additional work.