Math 131

Exam 3 Solutions

1. (a) [4%] First, find critical points of f [without expanding f'(x)]:

$$f'(x) = 0 \iff x (x - 2)^3 = 0$$
$$\iff x = 0 \text{ or } x = 2$$

Now proceed in either of two ways:

Method 1: Sample values. The derivative is continuous, so it suffices to test individual points elsewhere:

x	-1	0	1	2	3
f'(x)	27	0	-1	0	3
$\operatorname{sign}(f'(x))$	+	0	_	0	+

Hence:

- |f| is increasing for x < 0 and for x > 2|, that is, on $(-\infty, 0)$ and $(2, \infty)$; and
- f is decreasing for 0 < x < 2, that is, on (0, 2).

Method 2: Use inequalities. From $f'(x) = x (x-2)^3$:

- $x < 0 \implies x < 0$ and $x 2 < 0 \implies x < 0$ and $(x 2)^3 < 0 \implies f'(x) > 0 \implies f$ is increasing;
- $0 < x < 2 \implies x > 0$ and $x 2 < 0 \implies x > 0$ and $(x 2)^3 < 0 \implies f'(x) < 0 \implies f$ is decreasing; and
- $x > 2 \implies x > 0$ and $x 2 > 0 \implies f'(x) > 0 \implies f$ is increasing.
- (b) **[4%]**

$$f''(x) = (f')'(x) = x (3(x-2)^2) + (x-2)^3(1)$$

= $(x-2)^2 (3x + (x-2)) = (x-2)^2 (4x-2) = 2(2x-1)(x-2)^2$

Thus the critical numbers of f' are x = 1/2 and x = 2. Again, proceed in either of two ways:

Method 1: Sample values.

$x \mid$	0	1/2	1	2	3
f''(x)	-8	0	2	0	10
$\operatorname{sign}(f''(x))$	-	0	+	0	+

Hence:

- f is concave down for x < 1/2; and
- f is concave up for x > 1/2 (or, you could say, for 1/2 < x < 2 and for x > 2).

Method 2: Use inequalities. Since $2(x-2)^2 \ge 0$, the sign of f''(x) is the same as that of 2x - 1.

- $x < 1/2 \implies 2x 1 < 0 \implies f''(x) < 0 \implies f$ is concave down;
- $1/2 < x < 2 \implies 2x 1 > 0 \implies f''(x) > 0 \implies f$ is concave up; and
- $x > 2 \implies 2x 1 > 0 \implies f''(x) > 0 \implies f$ is concave up.
- (c) [4%] From (b), f has only one inflection point, namely, at x = 1/2. (The concavity does *not* change at x = 2, so there is no inflection point there!)
- (d) [4%] From (a) and the First Derivative Test, or from (a) and (b) and the Second Derivative Test:
 - f has a local maximum at x = 0; and
 - f has a local minimum at x = 2.

2. **[16%]** Variables: Let

t = time (years) after start,Q(t) = mass of UMa-2008 at time t.

Model: For some constant k, Q'(t) = k Q(t), that is,

 $Q(t) = Q(0) e^{kt}.$

Given: Q(2) = 0.85 Q(0). To solve for t: Q(t) = 0.10 Q(0).

Find k first: Use the given relation Q(2) = 0.85 Q(0):

$$Q(0) e^{k(2)} = 0.85 Q(0)$$

$$e^{2k} = 0.85$$

$$2k = \ln 0.85$$

$$k = \frac{\ln 0.85}{2}$$
(Note: k < 0)

Then

$$Q(t) = Q(0) e^{\left(\frac{\ln 0.85}{2}\right)t}.$$

Finally, solve Q(t) = 0.10 Q(0) for t:

$$Q(0) e^{\left(\frac{\ln 0.85}{2}\right)t} = 0.10 Q(0)$$
$$e^{\left(\frac{\ln 0.85}{2}\right)t} = 0.10$$
$$\left(\frac{\ln 0.85}{2}\right) t = \ln 0.10$$
$$t = \frac{2\ln 0.10}{\ln 0.85} \approx 28.336.$$

Answer: About $\boxed{28.336}$ years $\boxed{}$.

(If you interpret the question as asking how much longer it takes after the initial 2-years' decay, then the answer would be, instead, about 26.336 years.)

3. (a) [6%] The quotient is "0/0-form" because

$$\lim_{x \to 0} (2e^x - 2) = 2e^0 - 2 = 0, \qquad \lim_{x \to 0} x = 0.$$

Then:

$$\lim_{x \to 0} \frac{2e^x - 2}{x} = \lim_{x \to 0} \frac{d(2e^x - 2)/dx}{d(x)/dx}$$
(L'Hospital's Rule)
$$= \lim_{x \to 0} \frac{2e^x}{1}$$
$$= 2e^0 = \boxed{2}.$$

(b) [5%] L'Hospital's Rule does *not* apply here, because $\lim_{x \to 0} x + \cos x = 0 + \cos 0 = 1 \neq 0$. However, by Direct Substitution (or the ordinary Quotient Rule for limits):

$$\lim_{x \to 0} \frac{x + \sin x}{x + \cos x} = \frac{0 + \sin 0}{0 + \cos 0} = \frac{0}{1} = \boxed{0}$$

(c) $[\mathbf{5\%}]$ The quotient is " ∞^0 -form" because

$$\lim_{x \to \infty} (1+x) = \infty, \qquad \lim_{x \to \infty} \frac{1}{x} = 0.$$

 Let

$$y = (1+x)^{1/x}$$

so that

$$\ln y = \frac{\ln(1+x)}{x}$$

Now

$$\lim_{x \to \infty} \ln(1+x) = \infty, \qquad and \lim_{x \to \infty} x = \infty,$$

so that the quotient $\ln y = \frac{\ln(1+x)}{x}$ is " $\infty/\infty\text{-form}$ ". Then

$$\lim_{x \to \infty} (\ln y) = \lim_{x \to \infty} \frac{\ln(1+x)}{x}$$
$$= \lim_{x \to \infty} \frac{d (\ln(1+x)) / dx}{d (x) / dx}$$
(by L'Hospital's Rule)
$$= \lim_{x \to \infty} \frac{1 / (1+x)}{1}$$
$$= \lim_{x \to \infty} \frac{1}{1+x} = 0.$$

Finally,

$$\lim_{x \to \infty} (1+x)^{1/x} = \lim_{x \to \infty} y$$
$$= \lim_{x \to \infty} e^{\ln y}$$
$$= e^{x \to \infty} \ln y$$
$$= e^{0} = \boxed{1}$$

4. (a) **[10%]** Let a = 0.

$$f(x) = e^x \qquad \Longrightarrow \qquad f(a) = e^0 = 1,$$

$$f'(x) = e^x \qquad \Longrightarrow \qquad f'(a) = e^0 = 1$$

Then:

$$L(x) = f(a) + f'(a) (x - a)$$

= 1 + 1(x - 0) = 1 + x

(b) **[6%]**

$$e^{-0.2} = f(-0.2) \approx L(-0.2)$$

= 1 + (-0.2) = 0.8

This is an exact decimal, so no further rounding is needed. Thus the approximation is:

 $e^{-0.2} \approx 0.8$

[*Note:* It would be misleading to write that $L(-0.2) \approx 0.8$, since the value of L(-0.2) is exactly 0.8. And it would be wrong to write that $e^{-0.2} = 0.8$, since, as the TI-89 shows, $e^{-0.2} \approx 0.818731$, that is, $e^{-0.2} \approx 0.819$ when rounded to 3 decimal places.]

5. (a) [6%] If f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then...

there is some c in the open interval (a,b) at which $\frac{f(b) - f(a)}{b-a} = f'(c)$.

(b) [10%] The function $f(x) = \ln x$ is differentiable and continuous for x > 0 and hence on [a, b] = [1, 3]. Moreover,

$$f'(x) = \frac{1}{x}$$

for all x > 0. By the Mean Value Theorem, there is some c in (1,3) at which

$$\frac{f(3) - f(1)}{3 - 1} = f'(c),$$

that is,

$$\frac{\ln 3 - \ln 1}{2} = \frac{1}{c},$$

and since $\ln 1 = 0$,

$$\ln 3 = 2\frac{1}{c}.$$

Now c < 3, so that $\frac{1}{c} > \frac{1}{3}$. Hence $\ln 3 > \frac{2}{3}$.

6. **[16%]** Let

$$t = \text{time (sec)},$$

$$y = \text{height (ft) of rocket at time } t$$

$$\theta = \text{angle of elevation at time } t$$

of rocket from camera

$$z = \text{distance (ft) at time } t \text{ between}$$

distance (It) at time t between camera and rocket.

Given:

$$\frac{dy}{dt} = 500.$$

To find:

 $\left. \frac{d\theta}{dt} \right|_{y=3000}.$ Method 1: Use the relation: $\tan \theta = \frac{y}{5000}$ Take $\frac{d}{dt}$ of the preceding relation:

$$(\sec^2 \theta) \frac{d\theta}{dt} = \frac{dy/dt}{5000},$$
$$(\sec^2 \theta) \frac{d\theta}{dt} = \frac{500}{5000} = \frac{1}{10},$$
$$\frac{d\theta}{dt} = \frac{1}{10} \cos^2 \theta.$$

rocket у camera 5000

(Chain Rule) (from given value of $\left. dy \right/ dt$)

In general,

$$\cos\theta = \frac{5000}{z}.$$

Now when y = 3000:

$$z = \sqrt{(5000)^2 + (3000)^2} = \sqrt{34,000,000} = 1000\sqrt{34}$$

so that

$$\cos \theta = \frac{5000}{1000\sqrt{34}} = \frac{5}{\sqrt{34}}$$

Hence

$$\frac{\left. \frac{d\theta}{dt} \right|_{y=3000}}{= \frac{1}{10} \left(\frac{5}{\sqrt{34}} \right)^2 = \frac{1}{10} \frac{25}{34} = \frac{5}{68}}{\approx 0.0735294 \approx 0.074}$$

Answer: The camera rotates at a rate of approximately 0.074/sec , i.e., 0.074 radians/sec. (This is approximately $4.23^\circ/{\rm sec.})$

Method 2: Use the relation $\theta = \arctan \frac{y}{5000}$.

Take
$$\frac{d}{dt}$$
:

$$\frac{d\theta}{dt} = \frac{1}{1 + (y/5000)^2} \frac{1}{5000} \frac{dy}{dt} \qquad (Chain Rule)$$

$$= \frac{(5000)^2}{(5000)^2 + y^2} \frac{1}{5000} \cdot 500 \qquad (from given value of $dy/dt)$

$$= \frac{1}{10} \frac{(5000)^2}{(5000)^2 + y^2}$$$$

so that

$$\left. \frac{d\theta}{dt} \right|_{y=3000} = \frac{1}{10} \frac{(5000)^2}{(5000)^2 + (3000)^2} = \frac{5}{68} \approx 0.074$$