1. (a) $[4 \%]$ First, find critical points of $f\left[\right.$ without expanding $\left.f^{\prime}(x)\right]$:

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longleftrightarrow x(x-2)^{3}=0 \\
& \Longleftrightarrow x=0 \text { or } x=2
\end{aligned}
$$

Now proceed in either of two ways:
Method 1: Sample values. The derivative is continuous, so it suffices to test individual points elsewhere:

x	-1	0	1	2	3
$f^{\prime}(x)$	27	0	-1	0	3
$\operatorname{sign}\left(f^{\prime}(x)\right)$	+	0	-	0	+

Hence:

- f is increasing for $x<0$ and for $x>2$, that is, on $(-\infty, 0)$ and $(2, \infty)$; and
- f is decreasing for $0<x<2$, that is, on $(0,2)$.

Method 2: Use inequalities. From $f^{\prime}(x)=x(x-2)^{3}$:

- $x<0 \Longrightarrow x<0$ and $x-2<0 \Longrightarrow x<0$ and $(x-2)^{3}<0 \Longrightarrow f^{\prime}(x)>0 \Longrightarrow$ f is increasing;
- $0<x<2 \Longrightarrow x>0$ and $x-2<0 \Longrightarrow x>0$ and $(x-2)^{3}<0$
$\Longrightarrow f^{\prime}(x)<0 \Longrightarrow f$ is decreasing; and
- $x>2 \Longrightarrow x>0$ and $x-2>0 \Longrightarrow f^{\prime}(x)>0 \Longrightarrow f$ is increasing.
(b) $[4 \%]$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(f^{\prime}\right)^{\prime}(x)=x\left(3(x-2)^{2}\right)+(x-2)^{3}(1) \\
& =(x-2)^{2}(3 x+(x-2))=(x-2)^{2}(4 x-2)=2(2 x-1)(x-2)^{2}
\end{aligned}
$$

Thus the critical numbers of f^{\prime} are $x=1 / 2$ and $x=2$. Again, proceed in either of two ways:

Method 1: Sample values.

x	0	$1 / 2$	1	2	3
$f^{\prime \prime}(x)$	-8	0	2	0	10
$\operatorname{sign}\left(f^{\prime \prime}(x)\right)$	-	0	+	0	+

Hence:

- f is concave down for $x<1 / 2$; and
- f is concave up for $x>1 / 2$ (or, you could say, for $1 / 2<x<2$ and for $x>2$).

Method 2: Use inequalities. Since $2(x-2)^{2} \geq 0$, the sign of $f^{\prime \prime}(x)$ is the same as that of $2 x-1$.

- $x<1 / 2 \Longrightarrow 2 x-1<0 \Longrightarrow f^{\prime \prime}(x)<0 \Longrightarrow f$ is concave down;
- $1 / 2<x<2 \Longrightarrow 2 x-1>0 \Longrightarrow f^{\prime \prime}(x)>0 \Longrightarrow f$ is concave up; and
- $x>2 \Longrightarrow 2 x-1>0 \Longrightarrow f^{\prime \prime}(x)>0 \Longrightarrow f$ is concave up.
(c) [4\%] From (b), f has only one inflection point, namely, at $x=1 / 2$.
(The concavity does not change at $x=2$, so there is no inflection point there!)
(d) [4\%] From (a) and the First Derivative Test, or from (a) and (b) and the Second Derivative Test:
- f has a local maximum at $x=0$; and
- f has a local minimum at $x=2$.

2. [16\%] Variables: Let

$$
\begin{aligned}
t & =\text { time (years) after start }, \\
Q(t) & =\text { mass of UMa-2008 at time } t .
\end{aligned}
$$

Model: For some constant $k, Q^{\prime}(t)=k Q(t)$, that is,

$$
Q(t)=Q(0) e^{k t}
$$

Given: $Q(2)=0.85 Q(0)$.
To solve for t : $Q(t)=0.10 Q(0)$.
Find k first: Use the given relation $Q(2)=0.85 Q(0)$:

$$
\begin{aligned}
Q(0) e^{k(2)} & =0.85 Q(0) \\
e^{2 k} & =0.85 \\
2 k & =\ln 0.85 \\
k & =\frac{\ln 0.85}{2}
\end{aligned}
$$

(Note: $k<0$)
Then

$$
Q(t)=Q(0) e^{\left(\frac{\ln 0.85}{2}\right) t} .
$$

Finally, solve $Q(t)=0.10 Q(0)$ for t :

$$
\begin{aligned}
Q(0) e^{\left(\frac{\ln 0.85}{2}\right) t} & =0.10 Q(0) \\
e^{\left(\frac{\ln 0.85}{2}\right) t} & =0.10 \\
\left(\frac{\ln 0.85}{2}\right) t & =\ln 0.10 \\
t & =\frac{2 \ln 0.10}{\ln 0.85} \approx 28.336
\end{aligned}
$$

Answer: About 28.336 years.
(If you interpret the question as asking how much longer it takes after the initial 2-years' decay, then the answer would be, instead, about 26.336 years.)
3. (a) [6\%] The quotient is " $0 / 0$-form" because

$$
\lim _{x \rightarrow 0}\left(2 e^{x}-2\right)=2 e^{0}-2=0, \quad \lim _{x \rightarrow 0} x=0
$$

Then:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{2 e^{x}-2}{x} & =\lim _{x \rightarrow 0} \frac{d\left(2 e^{x}-2\right) / d x}{d(x) / d x} \\
& =\lim _{x \rightarrow 0} \frac{2 e^{x}}{1} \\
& =2 e^{0}=2 .
\end{aligned}
$$

(b) [5\%] L'Hospital's Rule does not apply here, because $\lim _{x \rightarrow 0} x+\cos x=0+\cos 0=1 \neq 0$. However, by Direct Substitution (or the ordinary Quotient Rule for limits):

$$
\lim _{x \rightarrow 0} \frac{x+\sin x}{x+\cos x}=\frac{0+\sin 0}{0+\cos 0}=\frac{0}{1}=0
$$

(c) [5\%] The quotient is " \propto^{0}-form" because

$$
\lim _{x \rightarrow \infty}(1+x)=\infty, \quad \lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

Let

$$
y=(1+x)^{1 / x}
$$

so that

$$
\ln y=\frac{\ln (1+x)}{x}
$$

Now

$$
\lim _{x \rightarrow \infty} \ln (1+x)=\infty, \quad \text { and } \lim _{x \rightarrow \infty} x=\infty,
$$

so that the quotient $\ln y=\frac{\ln (1+x)}{x}$ is " ∞ / ∞-form". Then

$$
\begin{aligned}
\lim _{x \rightarrow \infty}(\ln y) & =\lim _{x \rightarrow \infty} \frac{\ln (1+x)}{x} \\
& =\lim _{x \rightarrow \infty} \frac{d(\ln (1+x)) / d x}{d(x) / d x} \\
& =\lim _{x \rightarrow \infty} \frac{1 /(1+x)}{1} \\
& =\lim _{x \rightarrow \infty} \frac{1}{1+x}=0
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\lim _{x \rightarrow \infty}(1+x)^{1 / x} & =\lim _{x \rightarrow \infty} y \\
& =\lim _{x \rightarrow \infty} e^{\ln y} \\
& =e^{\lim _{x \rightarrow \infty}} \ln y \\
& =e^{0}=1
\end{aligned}
$$

4. (a) $[\mathbf{1 0 \%}]$ Let $a=0$.

$$
\begin{aligned}
f(x) & =e^{x} & \Longrightarrow & f(a)=e^{0}=1, \\
f^{\prime}(x) & =e^{x} & \Longrightarrow & f^{\prime}(a)=e^{0}=1
\end{aligned}
$$

Then:

$$
\begin{aligned}
L(x) & =f(a)+f^{\prime}(a)(x-a) \\
& =1+1(x-0)=1+x
\end{aligned}
$$

(b) $[6 \%]$

$$
\begin{aligned}
e^{-0.2}=f(-0.2) & \approx L(-0.2) \\
& =1+(-0.2)=0.8
\end{aligned}
$$

This is an exact decimal, so no further rounding is needed. Thus the approximation is:

$$
e^{-0.2} \approx 0.8
$$

[Note: It would be misleading to write that $L(-0.2) \approx 0.8$, since the value of $L(-0.2)$ is exactly 0.8 . And it would be wrong to write that $e^{-0.2}=0.8$, since, as the TI- 89 shows, $e^{-0.2} \approx 0.818731$, that is, $e^{-0.2} \approx 0.819$ when rounded to 3 decimal places.]
5. (a) $[\mathbf{6 \%}]$ If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then...

$$
\text { there is some } c \text { in the open interval }(a, b) \text { at which } \frac{f(b)-f(a)}{b-a}=f^{\prime}(c) .
$$

(b) [10\%] The function $f(x)=\ln x$ is differentiable and continuous for $x>0$ and hence on $[a, b]=[1,3]$. Moreover,

$$
f^{\prime}(x)=\frac{1}{x}
$$

for all $x>0$. By the Mean Value Theorem, there is some c in $(1,3)$ at which

$$
\frac{f(3)-f(1)}{3-1}=f^{\prime}(c),
$$

that is,

$$
\frac{\ln 3-\ln 1}{2}=\frac{1}{c},
$$

and since $\ln 1=0$,

$$
\ln 3=2 \frac{1}{c}
$$

Now $c<3$, so that $\frac{1}{c}>\frac{1}{3}$. Hence $\ln 3>\frac{2}{3}$.
6. [16\%] Let

$$
\begin{aligned}
& t=\text { time }(\mathrm{sec}), \\
& y=\text { height }(\mathrm{ft}) \text { of rocket at time } t \\
& \theta=\text { angle of elevation at time } t \\
& \quad \text { of rocket from camera } \\
& z=\text { distance (} \mathrm{ft}) \text { at time } t \text { between } \\
& \quad \text { camera and rocket. }
\end{aligned}
$$

Given:

$$
\frac{d y}{d t}=500 .
$$

To find: $\left.\quad \frac{d \theta}{d t}\right|_{y=3000}$.
Method 1: Use the relation: $\tan \theta=\frac{y}{5000}$
Take $\frac{d}{d t}$ of the preceding relation:

$$
\begin{array}{rlr}
\left(\sec ^{2} \theta\right) \frac{d \theta}{d t} & =\frac{d y / d t}{5000}, & \quad \text { (Chain Rule) } \\
\left(\sec ^{2} \theta\right) \frac{d \theta}{d t} & =\frac{500}{5000}=\frac{1}{10}, & \text { (from given value of } d y / d t) \\
\frac{d \theta}{d t} & =\frac{1}{10} \cos ^{2} \theta . &
\end{array}
$$

In general,

$$
\cos \theta=\frac{5000}{z} .
$$

Now when $y=3000$:

$$
z=\sqrt{(5000)^{2}+(3000)^{2}}=\sqrt{34,000,000}=1000 \sqrt{34}
$$

so that

$$
\cos \theta=\frac{5000}{1000 \sqrt{34}}=\frac{5}{\sqrt{34}}
$$

Hence

$$
\begin{aligned}
\left.\frac{d \theta}{d t}\right|_{y=3000} & =\frac{1}{10}\left(\frac{5}{\sqrt{34}}\right)^{2}=\frac{1}{10} \frac{25}{34}=\frac{5}{68} \\
& \approx 0.0735294 \approx 0.074
\end{aligned}
$$

Answer: The camera rotates at a rate of approximately $0.074 / \mathrm{sec}$, i.e., 0.074 radians $/ \mathrm{sec}$. (This is approximately $4.23^{\circ} / \mathrm{sec}$.)

Method 2: Use the relation $\theta=\arctan \frac{y}{5000}$.
Take $\frac{d}{d t}$:

$$
\begin{aligned}
\frac{d \theta}{d t} & =\frac{1}{1+(y / 5000)^{2}} \frac{1}{5000} \frac{d y}{d t} \\
& =\frac{(5000)^{2}}{(5000)^{2}+y^{2}} \frac{1}{5000} \cdot 500 \\
& =\frac{1}{10} \frac{(5000)^{2}}{(5000)^{2}+y^{2}}
\end{aligned}
$$

$$
=\frac{(5000)^{2}}{(5000)^{2}+y^{2}} \frac{1}{5000} \cdot 500 \quad(\text { from given value of } d y / d t)
$$

so that

$$
\left.\frac{d \theta}{d t}\right|_{y=3000}=\frac{1}{10} \frac{(5000)^{2}}{(5000)^{2}+(3000)^{2}}=\frac{5}{68} \approx 0.074
$$

