1. (a) $[8 \%] \operatorname{avg} v=\frac{h(5.2)-h(5)}{5.2-5}$

$$
\begin{aligned}
& =\frac{\left[1200-4.9(5.2)^{2}\right]-\left[1200-4.9(5)^{2}\right]}{0.2} \\
& =\frac{-4.9\left[(5.2)^{2}+(5)^{2}\right]}{0.2} \\
& =-4.9 \frac{2.04}{0.2}=-49.98 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

(b) [8\%] avg $v=\frac{h(5+\Delta t)-h(5)}{\Delta t}$

$$
=\frac{\left[1200-4.9(5+\Delta t)^{2}\right]-\left[1200-4.9(5)^{2}\right]}{\Delta t}(\mathrm{~m} / \mathrm{sec})
$$

The question did not ask you to simplify the result, but if you do so, you should obtain:

$$
\begin{aligned}
& =\frac{-4.9\left(25+10 \Delta t+(\Delta t)^{2}\right)+4.9(25)}{\Delta t} \quad=\frac{-4.9\left(10 \Delta t+(\Delta t)^{2}\right.}{\Delta t} \\
& =\frac{-4.9 \Delta t(10+\Delta t)}{\Delta t}=-4.9(10+\Delta t)(\mathrm{m} / \mathrm{sec})
\end{aligned}
$$

2. (a) $[\mathbf{1 0 \%}]$ The desired slope m is given by:

$$
\begin{aligned}
m & =\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(4+h)^{2}-3(4+h)\right]-\left[4^{2}-3(4)\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{16+8 h+h^{2}-12-3 h-16+12}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(5+h)}{h} \\
& =\lim _{h \rightarrow 0}(5+h) \\
& =5+0=5 .
\end{aligned}
$$

(b) $[6 \%]$ The form of the tangent line is

$$
y-f(4)=m(x-4) .
$$

The tangent line has slope $m=5$ and goes through the point

$$
(4, f(4))=\left(4,4^{2}-3(4)\right)=(4,4)
$$

So its equation is

$$
y-4=5(x-4)
$$

That form is OK. So is a simplified form such as: $y=5 x-16$
3. (a) [8\%] Factor the denominator to obtain

$$
f(x)=\frac{4 x^{2}+5}{(x-1)(x-5)}
$$

Then f is continuous at every $x \neq 1,5$, so the only possible vertical asymptotes are at $x=1$ and $x=5$.

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{4 x^{2}+5}{(x-1)(x-5)}=-\infty
$$

because, for $x>1$ and $x \approx 1$, we have $4 x^{2}+5 \approx 4(1)^{2}+5=9>0$, while $x-1>0$ and $x-5<0$-so that $(x-1)(x-5)>0$-with $x-1 \approx 0$.
[You could similarly see that $\lim _{x \rightarrow 1^{-}} f(x)=+\infty$. But finding that one of the two one-sided limits is infinite is enough to establish that there is an asymptote at $x=1$.] Next,

$$
\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{+}} \frac{4 x^{2}+5}{(x-1)(x-5)}=+\infty
$$

because, for $x>5$ and $x \approx 5$, we have $4 x^{2}+5 \approx 4(5)^{2}+5=105>0$, while $x-1>0$ and $x-5>0$-so that $(x-1)(x-5)>0$-with $x-5 \approx 0$.
[You could similarly see that $\lim _{x \rightarrow 5^{-}} f(x)=-\infty$. But again it's enough to find one of the two one-sided limits.]
Hence the lines $x=1$ and $x=5$ are the vertical asymptotes.
(b) $[8 \%]$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{4 x^{2}+5}{x^{2}-6 x+5} \\
& =\lim _{x \rightarrow \infty} \frac{4+5 / x^{2}}{1-6 / x+5 / x^{2}} \\
& =\frac{4+0}{1-0+0}=4
\end{aligned}
$$

Similarly,

$$
\lim _{x \rightarrow-\infty} f(x)=4
$$

Hence the line $y=4$ is the one and only horizontal asymptote.
(Here you did need to determine the limit in the other direction, as $x \rightarrow-\infty$, too.)
4. (a) $[8 \%]$

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3} & =\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{x-3} \\
& =\lim _{x \rightarrow 3}(x+3)=3+3=6
\end{aligned} \quad \text { (by Direct Substitution)) }
$$

(b) $[8 \%]$

$$
\begin{array}{rlr}
\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{x^{2}(4-x)} & =\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{x^{2}(4-x)} \cdot \frac{2+\sqrt{x}}{2+\sqrt{x}} & \text { (rationalizing numerator) } \\
& =\lim _{x \rightarrow 4} \frac{2^{2}-(\sqrt{x})^{2}}{x^{2}(4-x)}=\lim _{x \rightarrow 4} \frac{4-x}{x^{2}(4-x)(2+\sqrt{x})} & \\
& =\lim _{x \rightarrow 4} \frac{1}{x^{2}(2+\sqrt{x})} & \\
& =\frac{1}{4^{2}(2+\sqrt{4})}=\frac{1}{64} &
\end{array}
$$

(by the product rule and continuity of cos).
5. (a) [6\%] For every $\epsilon>0$, there exists some δ such that:

$$
\text { if } x \neq 1 \text { and } 1-\delta<x<1+\delta \text {, then } 4-\epsilon<f(x)<4+\epsilon \text {. }
$$

You could also complete the statement in the form:

$$
\text { if } 0<|x-1|<\delta \text {, then }|f(x)-4|<\epsilon \text {. }
$$

In either of those forms, you could substitute the actual expression $(6 x-2)$ for $f(x)$.
(b) $[8 \%]$ You may do this with or without absolute values. Here's the way without them. We want to make $4-\epsilon<f(x)<4+\epsilon$, that is,

$$
\begin{equation*}
4-0.1<6 x-2<4+0.1 \tag{1}
\end{equation*}
$$

when x is sufficiently close to 1 (but $x \neq 1$). Now condition (??) is equivalent in turn to each of:

$$
\begin{aligned}
& 6-0.1<6 x<6+0.1 \\
& 1-\frac{0.1}{6}<x<1+\frac{0.1}{6}
\end{aligned}
$$

So we take

$$
\delta=\frac{0.1}{6} \text {. }
$$

or any smaller positive number. Of course $0.1 / 6 \approx 0.01666667$. However, if you want to give a single decimal as the answer, it would be wrong to take $\delta=0.01666667$ or $\delta=0.0166667$, etc. Instead, you would have to use for δ a value that is definitely less than $0.1 / 6$. For example, it would be OK to take $\delta=0.166666$.
6. (a) [8\%] That f is continuous at $x=1$ means $\lim _{x \rightarrow 1} f(x)$ exists and $\lim _{x \rightarrow 1} f(x)=f(1)$. The one-sided limits are:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}}(k x+4)=k(1)+4=k+4 \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} 2 x^{2}=2(1)^{2}=2
\end{aligned}
$$

For $\lim _{x \rightarrow 1} f(x)$ to exist we need these two one-sided limits to be equal:

$$
k+4=2
$$

that is,

$$
k=-2
$$

Thus for $k=-2$ we have $\lim _{x \rightarrow 1} f(x)$ exists, and $\lim _{x \rightarrow 1} f(x)=2$. Since $f(1)=2$, then

$$
\lim _{x \rightarrow 1} f(x)=f(1)
$$

Hence f is continuous at $x=1$ exactly in the case that $k=-2$.
(b) $[8 \%]$ We now know

$$
f(x)= \begin{cases}-2 x+4 & \text { if } x<1 \\ 2 x^{2} & \text { if } 1 \leq x\end{cases}
$$

The question is whether $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}$ exists.
The one-sided limits of the difference quotients are:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} & =\lim _{x \rightarrow 1^{-}} \frac{(-2 x+4)-2}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{-2 x+2}{x-2}=\lim _{x \rightarrow 1^{-1}} \frac{-2(x-1)}{x-1} \\
& =\lim _{x \rightarrow 1^{-1}}(-2)=-2
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1} & =\lim _{x \rightarrow 1^{+}} \frac{2 x^{2}-2}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{2\left(x^{2}-1\right)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{2(x+1)(x-1)}{x-1} \\
& =\lim _{x \rightarrow 1^{+}} 2(x+1)=2(1+1)=4
\end{aligned}
$$

[You could have worked instead with one-sided limits of $\frac{f(1+h)-f(1)}{h}$.]
Since these two one-sided limits are not the same, then f is not differentiable at $x=1$.

Note: To say simply that f is not differentiable at $x=1$ because its graph has a corner there is not enough-and will receive only very partial credit-because the question remains as to how you know for sure that there's a corner there. (And to determine that, you have to calculate the one-sided limits of the difference quotient, as above.)

