MATH 127 MIDTERM \#1 20 October 2005 SPECIAL CODE: 102005 p. 1 of 6

NAME (print): \qquad
SIGNATURE: \qquad
8 DIGIT SPIRE ID \#: \qquad
CIRCLE the name of your instructor below:
Rudvalis Sect. 1 MWF 9:05
Pedit Sect. 2 M WF 12:200 Cook Sect. 3 TuTh 9:30 Markman Sect. 4 TuTh 1:00
DIRECTIONS: This is a 90 minute exam. It consists of 20 multiple choice questions. Y our (percentage) score on this exam is 5 times the number of correct responses. Y our responses must be recorded on the green " bubble" sheets using a No. 2 pencil.

You are allowed to use any kind of calculator for this exam. Y ou are responsible for having a working calculator and knowing how to use it and also for having at least one No. 2 pencil.

YOU MAY NOT SHARE A CALCULATOR WITH ANOTHER STUDENT DURING THISEXAM

Y ou M AY use a one sided 8.5×11 page as a review sheet during the exam.
If you need more paper for work than is provided on the exam page, raise your hand and we will supply you with scratch paper. Besides the things mentioned above you may not have anything else on your desk except your ID card which will be checked when you turn in your exam.

On your green " bubble" sheet you M UST DO THE FOL LOWING:

- W RITE your name at the top left side in the section labeled NAME and BUBBLE it in below.
- WRITE your 8 digit SPIRE ID in the section labeled IDE NTIFICATION NUM BE R in the spaces labeled A through H in the middle of the bottom left and BUBBLE it in below that.
- WRITE and BUBBLE in 102005 in the section labeled SPE CIAL C ODE.
- BUBBLE in your section number (1,2 or 3) in the column labeled G RADE or E DUC.
- DO NOT write nor "bubble" in the sections for SEX or BIRTH DATE. (-1 pts each if you do.)
- Your responses to each of the 20 questions must be made by filling in the appropriate bubble on your answer sheet. In GRADING your exam the grading machine reads only the bubbles you have filled out so entering these bubbles correctly is vital to correctly recording your performance.
- All bubbles must be filled in solidly using a \# 2 pencil in items 1-20 of the answer sheet.
- DO NOT LEAVE YOUR SEAT once you have started the exam until you are ready to turn it in. If you have a question or need extra paper raise your hand and we will come to you.

1. If $f(x)=2 x^{2}+x-2$ then $f(-2)$ is
a) 2
b) 4
c) -2
d) 0
e) -4
2. The line with equation $4 y+2 x+12=0$ has slope, y-intercept and x-intercept, in that order, equal to:
a) 2,12 and 12
b) $-2,3$ and -6
c) 1/2,-3 and 6
d) $-1 / 2,-3$ and -6
e) 2,4 and 2
3. The average rate of change of $f(x)=2 \ln (x)$ between $x=1$ and $x=2$ (rounded to 2 decimals) is:
a) 1.33
b) $\mathbf{1 . 7 7}$
c) $\mathbf{1 . 2 7}$
d) 0.69
e) 1.39
4. A coffee shop sells cups of coffee for $\$ 1.50$ each. Suppose the fixed cost is $\$ 10,000$ and the variable cost is $\$ 0.10$ per cup. The number of cups sold at the break even point is closest to:
a) 5432
b) $\mathbf{2 3 8 3}$
c) 6982
d) 8234
e) 7143
5. A 100 mg dose of a certain drug is metabolized by the body in a manner so that $\mathbf{2 0 \%}$ of the remaining amount of the drug is eliminated each hour. Which of the following formulas best describes the amount of the drug remaining in the body after \mathbf{t} hours?
a) $\mathbf{Q}_{0} \mathbf{e}^{0.2 \mathrm{t}}$
b) $\mathbf{1 0 0 (1 . 2) ^ { t }}$
c) $100(0.8)^{t}$
d) $20(0.8)^{t}$
e) $\mathbf{1 0 0 (1 . 2)}{ }^{\mathrm{t}}$
6. If the function $\mathbf{P}(\mathbf{t})=\mathbf{3 7}(0.95)^{\mathbf{t}}$ is rewritten as $\mathbf{P}(\mathbf{t})=\mathbf{P}_{0} \mathrm{e}^{\mathrm{kt}}$, then the values of \mathbf{P}_{0} and \mathbf{k} are:
a) $\mathbf{P}_{0}=37$ and $k=0.051$
b) $\mathbf{P}_{0}=37$ and $k=-0.051$
c) $\mathbf{P}_{0}=95$ and $\mathbf{k}=0.05$
d) $\mathrm{P}_{0}=9.5$ and $\mathrm{k}=-1.051$
e) $\mathbf{P}_{0}=37$ and $\mathbf{k}=.95$
7. $\$ 2000$ is invested in an account where 4% annual interest is compounded continuously. The number of years required for the value of this account to reach $\$ 10,000$ is closest to:
a) 35 years
b) 40.2 years
c) 42 years
d) $\mathbf{1 2 7 . 5}$ years
e) $\mathbf{1 2 5}$ years
8. If we solve the equation $4 e^{2 x}=\ln 2$, then to 3 significant digits x is approximately:
a) 1.63
b) 0.881
c) 0.234
d) $\mathbf{0 . 4 0 1}$
e) .876
9. Suppose I have invested my money in an account where interest is compounded continuously. Five years ago the value of my account was $\mathbf{\$ 4 2 0 0}$ and today the value is $\mathbf{\$ 5 8 1 3}$. The interest rate \mathbf{r} for continuous compounding for this account is closest to:
a) 6.75%
b) 6.5%
c) 6.25%
d) 6.0%
e) 5.75%
10. The half-life of C arbon $\mathbf{1 4}$ is 5730 years. Assume that $\mathbf{1 0 0} \mathbf{g}$ of C arbon $\mathbf{1 4}$ are present in the bones of a living animal and this amount decays exponentially after its death. If $\mathbf{1 0} \mathbf{~ g}$ of C arbon 14 are found in the remains today, how many years ago did the animal die?
a) $\mathbf{2 0 , 0 0 0}$
b) $\mathbf{1 8 7 5 3}$
c) 19035
d) $\mathbf{1 7 6 3 4}$
e) $\mathbf{2 1 3 6 2}$
11. If the population of a certain bacteria doubles every 5 hours, how long does it take for this population to triple?
a) 7.5 hrs
b) $\mathbf{1 0} \mathrm{hrs}$
c) 7.9 hrs
d) 7 hrs
e) 6.8 hrs
12. Let $f(x)=x^{2}$ and $g(x)=\ln (x)$. Then $f(g(x))$ is
a) $\ln \left(x^{2}\right)$
b) $[\ln (x)]^{2}$
c) $x^{2} \ln (x)$
d) $2 \ln (x)$
e) $\ln [\ln (x)]$
13. M easurements of a quantity $w=f(t)$ depending on some input t give the following table:

\mathbf{t}	$\mathbf{0}$	3	6	9
$\mathbf{w}=\mathbf{f}(\mathbf{t})$	1	10	37	82

Which of the following functions $f(t)$ best describes the above table:
a) $f(t)=3 t+1$
b) $f(t)=t^{2}+1$
c) $f(t)=6 t+1$
d) $f(t)=9 t+1$
e) None of these
14. You run a chocolate chip cookie outfit and it costs $\$ 50$ to produce 100 cookies. Y ou notice that the increase in cost when producing 101 cookies is only 30 cents. W hich of the expressions below best describe this observation when $\mathbf{C}(\mathbf{q})$ denotes the costs in $\$$ for q cookies:
a) $C(101)=0.30$
b) $C(30)=101$
c) $C^{\prime}(100)=50$
d. $C^{\prime}(100)=0.30$
e) $C^{\prime}(100)=50.3$
15. The values of the distance $s(t)$ (measured in feet) traveled by a vehicle in time t (measured in seconds) are given in the following table:

\mathbf{t} (in sec)	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$
$\mathbf{s}(\mathbf{t})$ (in ft)	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 2}$	$\mathbf{2 5}$	$\mathbf{3 9}$	$\mathbf{5 3}$	$\mathbf{7 0}$

B ased on this data, the derivative $\mathbf{s}^{\prime}(\mathbf{2 0})$ is closest to:
a) $0.36 \mathrm{ft} / \mathrm{sec}$
b) $2.8 \mathrm{ft} / \mathrm{sec}$
c) $3 \mathrm{ft} / \mathrm{sec}$
d) $3.6 \mathrm{ft} / \mathrm{sec}$
e) $39 \mathrm{ft} / \mathrm{sec}$
16. Suppose $y=f(x)$ is a function with a continuous derivative on the interval $0 \quad x \quad 5$ which also satisfies ALL the following conditions:
$f(0)>0, f(5)>0, f^{\prime}(0)<0$ and $f^{\prime}(5)>0$.
Then we can conclude:
a) $f(x)$ is 0 somewhere between 0 and 5
b) $f(x)$ is concave down between 0 and 5
c) $f^{\prime}(x)$ is 0 somewhere between 0 and 5
d) $f^{\prime}(x)$ is zero somewhere between 0 and 5
e) fis always positive between 0 and 5
17. Suppose you put a cup of hot tea of temperature $200^{\circ} F$ on your table. If $T=f(t)$ describes the temperature of the tea after t minutes, what does $f^{\prime}(5)=-10$ mean?
a) Temperature of the tea after 5 minutes is $-10^{\circ} \mathrm{F}$?
b) A verage rate of change of temperature of tea over 5 minutes is $-10^{\circ} \mathrm{F} /$ minute.
c) The tea will cool by approximately $10^{\circ} \mathrm{F}$ during the sixth minute.
d) The tea will cool by approximately $10^{\circ} \mathrm{F}$ every minute.
e) None of the above statements is correct
18. Match the graphs of the functions $f(x), g(x)$ and $h(x)$ (on the left below) with the graphs of their derivatives (on the right below) which in scrambled order are labeled $\mathbf{r}(\mathrm{x}), \mathbf{s}(\mathrm{x})$ and $\mathbf{t}(\mathrm{x})$.

a) $f^{\prime}(x)=r(x), g^{\prime}(x)=t(x)$ and $h^{\prime}(x)=s(x)$
b) $f^{\prime}(x)=t(x), g^{\prime}(x)=r(x)$ and $h^{\prime}(x)=s(x)$
c) $f^{\prime}(x)=s(x), g^{\prime}(x)=r(x)$ and $h^{\prime}(x)=t(x)$
d) $f^{\prime}(x)=s(x), g^{\prime}(x)=t(x)$ and $h^{\prime}(x)=r(x)$
e) None of the above is correct
19. The graph of the function $y=f(x)$ is given in the figure below:

The second derivative $f^{\prime \prime}(x)$ is POSIT IVE on which of the following intervals:
a) Only on $(3,5)$
b) $O n$ both $(0,2)$ and $(4,6)$
c) $O n$ both $(-1,1)$ and $(3,5)$
d) $O n$ both $(1,3)$ and $(5,6)$
e) None of the above is correct
20. Daily cost and revenue functions for an airline company are shown in the following figure, where q is the number of flights the company operates and the vertical axis is (in millions of dollars).

If the company operates $\mathbf{2 5 0}$ flights per day (i.e. $\mathbf{q}=\mathbf{2 5 0}$), should it add another flight? W hy?
a) No, because the marginal cost is equal to the marginal revenue.
b) Yes, because the marginal revenue exceeds the marginal cost.
c) No, because the marginal cost exceeds the marginal revenue.
d) Yes, because the marginal cost exceeds the marginal revenue.
e) No, because the marginal revenue exceeds the marginal cost.

