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Part 0. Intro

1. Overview

1.0.1. QFT and mathematics. So far, only the simplest examples of QFT have been trans-
lated into mathematics but these have had huge impact in the last quarter century. Some
instances: (i) Low dimensional topology such as knot invariants, (ii) Morse theory, (iii)
vertex algebras and chiral algebras of Beilinson and Drinfeld, (iv) Mirror Symmetry that
relates complex geometry and symplectic geometry.

1.0.2. Topics. This text is an introduction to the work of Costello and Gwilliam. The
first part is Costello’s formulation of perturbative Quantum Field Theory (pQFT)

• (i) as mathematics,
• (ii) in large generality, and
• (iii) with ability to compute.(1)

The second part is a joint work of Costello and Gwilliam. This is an algebraic reformula-
tion of Costello’s machinery of QFT through the notion of factorization algebras (called
Operator Product Expansion algebras in physics).

The goal of the text is to get acquainted with ideas of Costello-Gwilliam on factorization
algebras as this technique is being developed(2) and hopefully on the level where one
could actually use these techniques. The field is wide open and very important, the main
question is whether these techniques can be developed into mathematical machinery that
churns out theorems.

The exposition will be mathematical with comments on how/why physicists think about
these ideas. The techniques of Costello and Costello-Gwilliam are elementary to start
with, just a smart use of integrals. The difficulty is mostly that one has to take in several
ingredients.

1.1. Some ingredients of Costello’s machine of effective QFT. The goal is to
develop the notion and construction of theories that satisfy the following two principles:

(1) Effective action principle. At any scale α. physics is described by an action Sα.
(2) Locality. In the limit as all scales are included, interactions between fields happen

at points.

1.1.1. “Effective” theories. The starting point is a standard idea in Quantum Field Theory
that

1This last claim is based on only one deep example that has appeared so far – construction of the
Witten genus from the holomorphic Chern-Simons theory.

2There is no paper yet, our source is a wiki in progress.
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(Wilson) Physics depends on the scale on which it is observed.

One very impressive consequence of this approach is that it produces an algebraic encoding
of QFT by a new kind of algebras called the “factorization algebras”.

1.1.2. Feynman graphs. The so called Feynman integrals are expressions which are not
mathematically well defined, however they are the best known way of thinking about
quantum phenomena.

Feynman graphs are a combinatorial technique for making sense of Feynman integrals by
organizing their asymptotic expansions. For physicists, the method of Feynman graphs
produces “all” numerical predictions. We would like to get some idea why this method is
so useful so we will study Feynman graphs in some detail.

1.1.3. Quantization by renormalization. In physics, quantization means passing from a
“classical” description of a system (valid on the usual scales) to a “quantum”’ description.
(valid on the small scales of elementary particles). Here quantization will be done by the
renormalization procedure. Terminology renormalization is used in physics for ideas having
to do with the change of scale. Effectively, for us renormalization is a certain game played
with Feynman graphs.

We will follow Costello’s approach to “quantization by renormalization” which is quite
elegant. However, as stated it is not constructive so what we really get is an abstract
existence statement.

1.1.4. Factorization algebras. This is a new algebraic structure (attributed to Beilinson-
Drinfeld). Any factorization algebra lives over a topological space and the notion of
factorization algebras is a new marriage of notions of algebras and sheaves.

A factorization algebra F over a topological space M associates to each open U⊆M a
vector space F (U) and the multiplication M(U)⊗M(V )

m−→ M(U⊔V ) is defined only
when U, V are disjoint.

Here are some origins of this idea. Historically, this is an incarnation of the notion of
operator product algebras in physics. For physicist, F (U) is the set of all the measure-
ments that can be performed on U . Then the disjointness requirement comes from the
Uncertainty Principle in Quantum Mechanics – roughly, one can only combine two mea-
surements which are separated. The reason is that in QM each measurement influences
the event while in classical physics we can observe an event without measurable impact.

The only case of operator product algebras that has been understood by mathematicians
are the vertex algebras (Borcherds received Fields medal for creating the notion of vertex
algebras).



6

Another origin of factorization algebras is the notion of En-algebras in topology (the
homotopy theory). To start with, E1-algebras are just the associative algebras, E∞-
algebras are the commutative associative algebras and E2, E3, ... are in between. The
point is that En-algebras are just the the simplest factorization algebras on the manifold
M = Rn – the ones with a topological invariance property.

1.1.5. Example: free theory. So far, the only available case where factorization algebra of
a QFT has been explicitly computed is the free theory when the manifold M is the real
line R. The corresponding factorization algebra is just the standard quantization of the
cotangent bundle T ∗M = T ∗R.

1.1.6. BV-formalism. The standard setting in physics is the study of the criticality space,
also called the Euler-Lagrange space,

EL(S) = {x ∈ E ; dS(x) = 0 }

of a function S (called the action) on a space E (of fields of the physical theory). So, we
are interested in where the differential of S vanishes.(3)

The Batalin-Vilkovisky formalism is the derived version of this setting, i.e., one adds
the machinery of Homological Algebra in order to view the criticality locus EL(S) in the
setting of derived geometry.(4)

The standard objective of Homological Algebra is to access the “hidden” information. In
the BV approach the derived geometry is used to eliminate the difficulties that appear
when the space F (and the action S) have large symmetry.

Example. The standard setting for physicists begins with a real manifold M on which the
fields live. In order to study a complex manifold X by QFT methods one views it as as
a real manifold with an extra symmetry given by the motion in the ∂ directions.

1.1.7. Example: Witten genus. This is about a well known feature of QFT, the ease
with which physicists construct modular forms the central objects of number theory. The
difference is that they can work with elliptic curves directly while mathematicians are often
forced to work with a more formal object, the modular parameter q which parametrizes
elliptic curves (but there are repetitions!).

3The critical locus is is also studied in mathematics, for instances minimax theory in Calculus, Morse

theory and Milnor fiber in Differential Geometry, vanishing cycles in Algebraic Geometry and Floer theory
in low dimensional topology. All these are related to QFT.

4A higher level of derived geometry has been recently constructed by Jacob Lurie. So far it has only
hit mathematics in a few places. Stay tuned.
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2. Mathematical view on Quantum Field Theory.

For physicists, QFT is the best known approach to understanding a specific phenomenon,
the elementary particles.(5) For mathematicians QFT does not appear as a theory of some
special phenomenon but rather as a fundamental mathematical discipline (like topology,
group theory,....) which influences and intertwines with many other such as geometry,
topology, representation theory, homological algebra, category theory, number theory, ...
and probably all the way to set theory.

We sketch the setting for QFT and its various versions. However, from the point of view
of our central interests, the only important thing in this exposition is that the passage
from Classical to Quantum Field theory can be viewed as shifting the interest from critical
points of a function S to integrals of the form

∫
dx e−S(x)φ(x) for various functions φ.

2.0.8. Lagrangian and Hamiltonian formalism. These are two approaches to physics. On
the classical level the Lagrangian formalism is the use of the Least Action Principle (the
system evolves so as to minimize the action functional) and its geometric home is the tan-
gent bundle TM to the manifold M of all possible positions. The Hamiltonian formalism
describes the evolution of the system in terms of the canonical symplectic structure on
the cotangent bundle T ∗M . The large symmetry of T ∗M (“canonical transforms”) allows
one to pass to the coordinate system where the given problem is simple.

Historically, QM arose in the Hamiltonian setting as quantization of the symplectic struc-
ture on T ∗M – this means that functions on T ∗M were replaced by operators on the
Hilbert space of L2-functions on M . The idea is that these functions represent measure-
ments one can perform in a given classical physical system, then for the quantum version
of the system it turns out that the measurements can not be adequately represented by
numbers, instead they can be viewed as self-adjoint operators on the Hilbert space. The
values of a function are in this way quantized to eigenvalues of an operator and more
generally to matrix coefficients of the operator.

The Lagrangian reformulation of QM (due to Dirac and Feynman) arose as a formula
for the above matrix coefficients as an integral with a statistical (probabilistic) meaning.
(However, the relevant probability theory is not standard – probabilities are complex
numbers!)

This is the formalism we will use. While Lagrangian formalism is more general, in the
Hamiltonian formalism one has a very efficient calculational tool – the Representation
Theory.

2.0.9. Classical Field Theory. The setting is given by a manifold M , a space E of fields
on M and a function S on fields, called action.

5This still contains many fundamental mysteries. For instance, we do not know what time is (“it arises
in regions with non-turbulent gravity”). Even worse, our notion of space seems likely to break on small
scales. ETC.
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The fields are local in M (“sections of a sheaf on M”) for instance they could be maps
from M to some target space X. The action function describes the physical system we
are interested in. It is also in some sense local in M The first level of the meaning of this
locality property is that S is an integral over M of a quantity called the Lagrangian

S(x) =

∫

M

L(m,x), x ∈ E .

(Then “locality” of S means that the Lagrangian is “a function on the jet space of fields”,)

The object of interest is the criticality space, also called the Euler-Lagrange space,

EL(S) = {x ∈ E ; dS(x) = 0 } ⊆ E
of the action function S.

The idea is that the fields x are all possible evolutions x of the system. The evolutions
which are physically meaningful are those that satisfy the Equation of Motion(say F =
ma). A particular feature of physics is that the Equation of Motion takes the form of the
criticality equation dS(x) = 0.

2.0.10. QFT in terms of Feynman integrals. In physics of small scales, the initial condi-
tions do not determine the evolution of the system. If we prepare one experiment in the
same way many times, the measurement will not be the same. So, no theory can predict
the numerical value of a given experiment.

What is this poor science to do? One can say that it carefully chooses a question that
can be answered. What can be predicted, is the statistical behavior – the average over
a large number of repetitions of the experiment. Probabilistically speaking, what theory
can predict is the probability that the result of a given experiment will be certain event
A (one among all possible outcomes of the experiment). In other words, the frequency
with which A occurs in a large number of repetitions of the experiment.

An equivalent formulation is that for a certain measurement(6) φ we cannot predict the
numerical value of φ but only the expected value 〈φ〉, i.e., the average over a large number
of experiments.

The probability theory says that the natural formula for the expectation 〈φ〉 of φ is a
certain average of values φ(x) when x goes over the set E of all possible evolutions x
of the system. Here, φ(x) is the value that φ would take if the system would evolve
according to x. This average is weighted with the probability p(x) that the system will
evolve according to x, so the formula should take the form of an integral

〈φ〉 =

∫

x∈E

dx p(x) φ(x).

However, applying this directly to QFT does not work. The problem is that the probability
p(x) that we measure through repetitions of an experiment does not contain enough

6The following words will be synonymous for us: “experiment”, measurement”, “observable”.
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information. It turns out that the probability p(x) has a refinement, the probability
amplitude which is a complex number P(x) of size |P(x)|2 = p(x). The point is that while
the measured probability p(x) does not satisfy any superposition principle (a formula for
probability of a combination of experiments), P(x) does. In particular, the corrected
formula for expected value as a superposition of contributions from all possible evolutions
is physically correct:

〈φ〉 =

∫

x∈E

dx P(x) φ(x).

This formula is literally correct under certain normalization of the measure dx, one should
require that 〈1〉 = 1, i.e., the expected value of the constant function 1 is 1. Usually

one uses a measure that has not been normalized, then Z
def
= 〈1〉 is called the partition

function and the true expected value of φ is 〈φ〉/Z.

2.0.11. Probability formula. The key insight is that the probability amplitude P(x) is
given by a classical quantity, the action S that describes the classical physical system.
The formula takes form

P(x) = e−i
S(x)

ℏ ,

hence

〈φ〉 =

∫

x∈E

dx e−i
S(x)

ℏ φ(x).

The parameter ℏ is called the Planck scale.

This is the first appearance of the principle that physics depends on the scale on which it
is observed.(7) The idea is that as ℏ→ 0 one passes to classical physics. The mathematical
machinery is the Stationary Phase Principle: as ℏ → 0 the oscillations in the integrand
become faster, in the limit the only contributions that survive are those from critical
points of S(x), i.e., from classical solutions.

The above formula relates the classical system described by action S and the quantum
system. This relation involves complex numbers because QFT deals with two notions of
probability. The first is the standard probability which is the way we perceive the reality
as we measure the “average value of a large number of experiments”. The second could
be called complex probability, this is how the world actually functions.

We do not have any way to directly measure the phase of the complex probability P(x),
we can only learn from it indirectly by finding how experiments interfere with each other.
The basic example is Feynman’s (somewhat idealized) “two slits experiment”.

2.0.12. Feynman measure. The most obvious problem is that we do not know how to give
meaning to the measure dx.(8) The only exception is Quantum Mechanics which is the
case of QFT when the underlying manifold M is of dimension 1. Then E is a space of
paths and dx is the Wiener measure on paths.

7In Quantum Electro Dynamics ℏ∼ 1
137 .

8Feynman thought of dx as a translation invariant measure on a vector space.
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For practical purses, physicists can view this problem as largely resolved. On the theoret-
ical level the solution is the understanding of how the (undefined) measure dx transforms,
i.e., how to calculate with it. On the numerical level one makes sense of the integral by
the technique of Feynman graphs (this only works in the perturbative regime, i.e., when
some parameter is small).

2.0.13. Passage to the Euclidean QFT. The second problem is the oscillatory nature of
the integral. Even if we knew the measure, the integrals like

Z = 〈1〉 =

∫

x∈E

dx e−i
S(x)

ℏ

could not converge absolutely since the integrand has size |e−iS(x)
ℏ | = 1 and we are inte-

grating over a large space of fields.

A way around this problem is to analytically continue the integral to its non-oscillatory
form and consider

〈φ〉Euclid =

∫

x∈E

dx e−
S(x)

ℏ φ(x).

Here, e−
S(x)

ℏ is positive and ≤ 1 so it can be interpreted as a standard probability.

The strategy is to compute the Euclidean expectation 〈φ〉Euclid and then analytically
continue the formula to get the original expectation 〈φ〉. This actually involves changing

the metric on M from the physically natural Minkowski signature −dt2 +
∑N

1 x2
i to

Euclidean signature dx2
0 +

∑N
1 x2

i by analytic continuation of time t to it = x0 (“Wick
rotation”).

So, one calls the physically relevant version of expectation integrals (with e−i
S(x)

ℏ ) the

Minkowski QFT, and the the non-physical version (with e−
S(x)

ℏ ) the Euclidean QFT.

Remarks. (0) This is one of a number of methods in QFT which are “not physical” in
the sense that in order to get results that should agree with experiments one computes
using some mathematical machinery which does not have a physical meaning. Another
example are the Feynman graphs.

(1) The lack of clear foundations of QFT, i.e., the understanding of the complex valued
probability and of the Feynman measure, is clearly something for mathematicians to
worry about. For physicists this is not a practical problem in standard applications since
physicists understand how to calculate with these objects. However, one can wonder
whether proper foundations are relevant in understanding fundamentally new physics such
as unification of QFT and General Relativity (through something like String Theory).

2.0.14. Perturbative approach to Feynman integrals. This means that we consider the case
when some parameter is small and the corresponding approximations provide a simplified
theory which is more manageable. This appears in several related ways, say
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(1) Perturbation of Classical Field Theory to QFT: here ℏ is small.
(2) Interesting theory as a perturbation of a simpler theory: here a coupling constant

g which couples the simple action with the new ingredient is small

Sinteresting = Ssimpler +
1

g
Sextra.

(3) Perturbation φ of a classical solution φ0 to a nearby field φ. Here one linearizes the
problem at φ0, so one replaces the original space of fields E with the tangent space
Enew = Tφ0E at the classical solution. So, new fields are perturbations e ∈ Tφ0E of
φ0 to φ = φ0 + e.

(4) Perturbation of the empty space. This means that the “free” action Sfree which
describes the physics of the empty space, is perturbed to a new action S = Sfree+I
which describes the physics with some kind of interactions. Here, the interaction
term I is considered as small.

Following Costello, we study perturbative theories such that the space of fields E is a
vector space and 0 is a critical solution (as in (3)). Then the Taylor expansion of S starts
with the quadratic term: S = S2 + S>0 which we call the free action Sfree = S2 and the
higher terms are called the interaction term S>0 = I. The interaction term is viewed as
infinitesimal (as in (4)).

Costello, actually relaxes some of these assumptions using tricks such as BV-formalism.

Our interest here is in Feynman integrals, a powerful tool of QFT. While these integrals
are not a well defined mathematical objects, they are symbolic expressions that physicists
know how to manipulate to get theoretical information and fantastically precise numerical
predictions.

We will only study Feynman integrals in the perturbative approach, so we have to accept
the restriction that certain parameter has to be small. This is the most standard way of
making sense of Feynman integrals – one replaces integrals with certain divergent series
which are believed to be the asymptotic expansions of these undefined integrals.
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Part 1. Expansion of Feynman integrals according to graphs

When the space of fields is finite dimensional Feynman integrals one can make sense of
Feynman integrals and calculate their expansions

〈φ〉 def
=

∫

E

dx eS(x)φ(x) =

∫

graphs γ

w(S, φ; γ)

into sums of weights (amplitudes) w(S, φ; γ) corresponding to graphs γ (chapter 3). This
graph expansion formula can be viewed as the definition of Feynman integrals in infinite
dimensional situations whenever weights w(S, φ; γ) make sense.

The meaning of this “abstract” formalism of expansions of Feynman integrals is that it
localizes on the moduli of graphs the interaction of the quadratic part g of the action and
the remainder I. Here, S = −g

2
+ I, g is a metric on the space of fields, −g

2
is called the

free action and the remainder I is called the interaction term.

However, in the setting of QFT the weights turn out to be themselves certain integrals
which are usually infinite. So, the above “abstract” formalism of expansions of Feynman
integrals is only the beggining of the story. In 4 we indicate two strategies to approximate
the dual metric g∗ on E∗ by “propagators” P ∈ S2E . This results in approximation of
weight integrals w(S, φ; γ) by new weight integrals wγP (I, φ) which are well defined.

When one tries to restore the original weights by taking limit P → g∗, infinities return.
This can be cured by a choice of a “renormalized” version of the limit. The renormalization
procedure systematically removes infinities. One measure of its subtlety is that it reveals
the fact that the original Feynman integral is usually not a well defined number – one
needs additional information to get rid of the choices that appear in renormalization
procedure. In 2 we study renormalization in the case when it is applied to quantizing
classical theories to “effective” quantum theories.

3. The abstract Feynman expansion

In this chapter we “invent” the abstract machinery of Feynman expansions by calculating
Feynman integrals in the case when the space of fields is finite dimensional. Then the QFT
background is not relevant and we are just constructing expansion of certain integrals on
a finite dimensional vector space.

The mechanism that reduces calculation of the expansion to differentiation is presented in
section 3.2 as Fourier transform. The combinatorics of this differentiation is first presented
in 3.2.6 in a (misleading) generality and then repeated (the relevant version) in sections
3.3 and 3.4. The Wick formula proof in 3.3 is used as an introduction to the the general
Feynman expansion 3.4. (the calculation is the same up to more combinatorics).

The combinatorics of the use of graphs is explained in categorical terms and relevant
terminology is in appendices 3.6-3.8 which contain more information than is needed for
the main text.
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3.1. Intro.

3.1.1. Perturbative approach to Feynman integrals. Our interest here is in Feynman inte-
grals, a powerful tool of QFT. While these integrals are not a well defined mathematical
objects, they are symbolic expressions that physicists know how to manipulate to get
theoretical information and fantastically precise numerical predictions.

We will only study Feynman integrals in the perturbative approach, so we have to accept
the restriction that certain parameter has to be small. This is the most standard way of
making sense of Feynman integrals – one replaces integrals with certain divergent series
which are believed to be the asymptotic expansions of these undefined integrals.

3.1.2. Feynman graphs. The terms in this Feynman expansion are indexed by a certain
class of graphs called Feynman graphs. Their role seems to be the local analysis of the
interaction of two constituents (summands) of the action. The formalism applies to the
case when the space of fields E is a vector space and one of the summands is quadratic.
We call this one the “free action” Sfree. The other summand is itself called “interaction”
I (the reason for this is found in the pseudoparticle view on Feynman graphs which will
appear later).

The way Feynman graphs appear in the interaction of Sfree and I seems to be based on
the fact that we know the Fourier transform of e−Sfree .

3.1.3. The abstract Feynman calculus. This is the formula for expansion of the integral
over a vector space E ∫

E

dx e−S(x)/ℏ φ(x) ,

as a sum over a certain class of graphs γ,

∑

γ

1

|Aut(γ)|w
γ(S).

We will prove this formula and its generalizations when the vector space E is finite di-
mensional and the interaction part I of the action is infinitesimal. In general we will use
it as the definition of the integral.

We will see that these Feynman graphs arise simply from differentiating polynomials by
constant coefficient differential operators. So, the Feynman calculus turns out to be the
combinatorics of differentiation.

On the other hand, Feynman graphs are really objects of category theory (“stacks”) and
have combinatorial nature. The categorical language that we use absorbs some traditional
features of the theory – the automorphisms and colorings of graphs. For instance, in the
categorical setting, a “colored graph” is an “object” while a “non-colored graph” is a
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“moduli of objects”.(9) The algebraic machinery that we use is really the localization of
tensor algebra over the moduli stacks of finite sets and graphs.

3.1.4. Contents. In 3.2 we describe the setting for Feynman integrals and the ingredients
for the graph expansion approach. These integrals are well defined in the finite dimensional
setting and in sections 3.3 and 3.4 we calculate in the finite dimensional setting the
formulas for the expansion of Feynman integrals. These formulas are then promoted in
3.9 to definitions of Feynman integrals in the infinite dimensional case.

3.2. Ingredients: Fourier transform and combinatorics of differentiation. We
describe the setting for Feynman integrals in 3.2.1, in particular (as explained in 3.2.2),
here we only consider these integrals in the finite dimensional setting. We will explain
two ingredients in deriving the graph expansion of Feynman integrals: the use of Laplace
transform(10) in 3.2.3 gives a formula for the expectation integral

〈φ〉g,I =
[
eg

∗/2 (eIφ)
]

(0)

in terms of differentiation by an infinite order differential operator eg
∗/2. The graphs enter

through the combinatorics of differentiation that we consider in 3.2.6.

3.2.1. The setting for Feynman integrals. The data (E , g, I) for a Feynman integral consist
of a vector space E (“fields ”), a quadratic form g on E and the interaction function I on
E .(11) We will only use the Taylor expansion of I at zero I =

∑
Ik with Ik of degree k,

so we can think of I as a formal series in fields. (Sometimes Ik = 0 for k < 3.)

We call S = −g
2
+ I the action, its free part is Sfree

def
= − g

2
. The functions on E are called

observables: Ob = C∞(E) Our goal is to define and study the Feynman (expectation)

integrals of observables φ, with respect to the action S = g(x)
2
− I(x).

〈φ〉 def
=

∫

E

dx eS(x)/ℏφ(x).

When φ is a product, we call 〈φ1, ..., φN〉S def
= 〈φ1· · ·φN〉S the correlation of functions φi.

3.2.2. Advantages of the finite dimensional setting. Our calculations will be done in a
finite dimensional case and for a positive definite inner product. So we consider a finite
dimensional vector space V over R with a positive definite inner product g(x, y) = x·y =
(x, y). We will use the corresponding quadratic function g(x) = g(x, x).(12)

9This is one of examples of how physicists use category theory.
10This is the two-sided Laplace transform, i.e., essentially the Fourier transform.
11In applications to QFT E E is the space of smooth sections E = C∞(M,E) of a vector bundle E

over a manifold M .
12The case of vector spaces over a field k ∈ {R, C, H} is actually a special case when our vector space

V has some extra structure.
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The finite dimensionality allows us to choose dx as the Lebesgue measure on V normalized
with respect to g so that the integral

∫
V

dx e−g(x)/2 equals one. For instance for V = Rn,

with the standard inner product and the standard measure dx, one has
∫

Rn dx e−x
2/2 =√

2π
n
, hence dx = dx

(2π)n/2 .

We denote by g∗ the dual (“inverse”) metric on V ∗.

3.2.3. Laplace transform. We use Laplace transform in the form which takes functions on
V to functions on V ∗,(13)

(Lf)(J) =

∫

V

dx e〈J,x〉f(x), J ∈ V ∗.

This is just an analytic continuation of the Fourier transform, indeed, in Minkowski QFT
we would use the Fourier transform rather than the Laplace transform.

Recall that a polynomial function f ∈ O(V ) = SV ∗ on V , can be viewed as a constant
coefficient differential operator f on V ∗.

Lemma. (a) Laplace transform relates dual metrics g, g∗ on V, V ∗ by

L(e−g/2) = eg
∗/2.

(b) For a polynomial function f on V

L(fφ) = f(Lφ).

(c) For a polynomial function φ on V and a function f on V ∗ such that L−1f is defined
∫

V

dx L−1(f)·φ = (fφ)(0).

Proof. (a) is obtained by the completion to a square. (b) is the claim the differentiation
under the integral sign: ∂y

∫
R
exyf(x) dx =

∫
R
exy xf(x) dx.

(c) Finally,
∫

V

dx L−1(f)φ = L[φ·L−1(f)] (0) = [φ L(L−1(f)](0) = [φf ](0) = [fφ](0).

Corollary. (a) The expectation of a polynomial function φ on V can be viewed in terms
of applying an infinite order differential operator eg

∗/2 and evaluating at 0 ∈ V :

〈φ〉g,I =
[
eg

∗/2 (eIφ)
]

(0).

(b) The free expectation of a polynomial function φ on V is

〈φ〉free = φ(eg
∗/2) (0).

13Also called the two-sided Laplace transform. The standard Laplace transform
∫ ∞

0
dx esx esxf(x) is

then called one-sided Laplace transform.
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Remark. Since the pairing of SV and SV ∗ by

〈A,B〉
def
=

(
A(B)

)
(0)

is symmetric, formula (b) is just a special case of (a).

Proof. (a) follows from part (c) of the lemma,

〈φ〉g,I =

∫

V

dx e−
g
2 · eIφ =

∫

V

dx L−1(e
1
2
g∗) · (eIφ) =

[
eg

∗/2 (eIφ)
]

(0).

(b) 〈φ〉free is
∫

V

dx e−g/2 φ = L(φe−g/2) (0) = φ[L(e−g/2)] (0) = φ(eg
∗/2) (0).

3.2.4. Labeling graphs by tensors. To a finite nonempty set S we attach a flower graph
(or star graph) ⋆S which has one root and the set of prongs (petals) stemming out of this
root is S. Graphs which are disjoint unions of flowers will be called flower patches.

For a homogeneous tensor A ∈ Sa(V ) the phrase “label the star graph ⋆S by A” (or just:
“put A on ⋆S”), will mean the following choice:

• Choose a way to write the “label” A as a sum A =
∑

i v1,i· · ·va,i, vj,i ∈ V , i.e.,

a lift of A to Ã =
∑

i v1,i⊗· · ·⊗va,i ∈ V ⊗n = V ⊗{1,...,n}.
• Choose an ordering of S.

We will loosely call the collection vj,• the jth “linear factor” of A and then we will describe
the labeling by: “we have put the label v1,i⊗· · ·⊗va,i on ⋆S” in the sense that we “label
the jth point in S by vj,i”.

The choices of lifting A and of ordering S will eventually be irrelevant, see .......!

By the phrase “putting a collection of tensors Fi ∈ S(Vi), i = 1, ...,m, on a graph γ” we
mean that we order the set of vertices as Vγ = {v1, ..., vm} and label the flower at vi by
Fi.

3.2.5. Contraction of tensors along a graph. Only the first part (A) will be relevant for
us. In (A) and (C) we generalize the contraction procedure to bigraphs just to indicate
the natural scope of the technique. As we will see next, it explicates the product rule for
differentiation.

A. Graphs.

B. Bigraphs. By a bigraph with tails we will mean a graph with tails γ with a partition
of vertices Vγ = V 0

γ ⊔V 1
γ such that (i) all edges run between V 0

γ and V 1
γ , and (ii) all tails

stem from vertices in V 1
γ . The subclass of bigraphs is obtained by disallowing tails.

Let a• = (a1, ..., am) ∈ Nm and b• = (b1, ..., bn) ∈ Nm. By an “(a•, b•)-graph with tails” we
will mean a bigraph with tails (ga, V 0

γ , V
1
γ ) such that (i) vertices in each of the parts are
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ordered: V 0
γ = {v1, ..., vm} and V 1

γ = {u1, ..., un}, so that the valencies are given by a•, b•,
i.e., kvi

= ai and kuj
= bj. By “(a•, b•)-graphs” we mean the submoduli where the tails

are disallowed. (Notice that these moduli are sets: the orderings prevent automorphisms.)

Consider two ordered collections of tensors A• = (A1, ..., Am), Ai ∈ S(V ), and B• =
(B1, ..., Bn), Bj ∈ S(V ∗), If deg(ai) = a, deg(Bj) = bj, then we can “put” A•, B• on any
(a•, b•)-graph (with tails) γ, in the sense that we put Ai and Bj on the flowers at vertices
v0
i and v1

j respectively.

The “γ-contraction” 〈A1· · ·Am, B1· · ·Bn〉γ of tensors A1· · ·Am ∈ SV and B1· · ·Bn ∈
S(V ∗) that have been placed on γ, is obtained by contracting the “linear factors” of
A1· · ·Am and B1· · ·Bn〉γ along edges of γ. It lies in Stγ where tγ is the number of tails of
γ (these are the same as linear factors of B1· · ·Bn which have not been contracted).

C. From graphs to bigraphs. The version of the above story that we will eventually
be interested in concerns graphs rather than bigraphs. Any graph γ (possibly with tails)

gives a bigraph (
··
γ, V 0

··
γ
, V 1

··
γ
) obtained by breaking each edge e into two edges that meet at

a new vertex ve. So, vertices of
··
γ are given by vertices and edges of γ

V 0
··
γ

= Vγ and V 1
··
γ

= Eγ,

while each edge e of γ with prongs p′, p′′ ending in vertices v′, v′′ gives two edges ep′ , ep′′

connecting the new vertex ve with the old vertices v′, v′′. The tails of
··
γ are the same as

in γ.

Lemma. The bigraph contraction procedure applied to graphs yields the graph contraction
procedure.

3.2.6. Combinatorics of differentiation. For psychological reasons we present here a
graphical interpretation (i.e., in terms of graphs), of the differentiation of a product of
polynomials by a product of constant coefficient differential operators. Actually, this
idea will only be used in a special case where it will be described ab ovo. In this case
all tensors Ai’s will be the same tensor P of degree two, while tensors Bj will coincide
whenever their degree are the same. This will actually change the flavor of the story
since it will reduce to ordinary graphs rather than the “(a•, b•)-graphs” below.

We consider homogeneous tensors A1, ..., Am ∈ S(V ) and B1, ..., Bn ∈ S(V ∗) of degrees
ai = deg(Ai), bj = deg(Bj).

Lemma. (a) The derivative (Am· · ·A1)(B1· · ·Bn) ∈ S(V ∗) localizes to (a•, b•)-graphs
with tails,

(Am· · ·A1)(B1· · ·Bn) =
∑

γ∈ (a•,b•)−graphs with tails

〈A1· · ·Am, B1· · ·Bn〉γ.
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(b) The pairing 〈Am· · ·A1, B1· · ·Bn〉 def
= (Am· · ·A1)(B1· · ·Bn) (0) ∈ k, localizes to

(a•, b•)-graphs,

〈A1· · ·Am, B1· · ·Bn〉 =
∑

γ∈ (a•,b•)−graphs

〈A1· · ·Am, B1· · ·Bn〉γ.

Remark. (0) While part (b) is a formality, part (a) is the content of the use of graphs.

(1) In (b) we meet the flow on fields

Φt
def
= etP/2

for P = g∗.

Proof. (a) We draw a picture consisting of two flower patches (say, each drawn as a
rows of flowers) and we put tensors A1· · ·Am ∈ S(V ) on the upper flower patch and .
B1· · ·Bn ∈ S(V ∗) on the lower one. (So, the petals in the upper row represent copies of V
and the petals in the lower row represent copies of V ∗.) The upper and lower row consist
of flowers ⋆A1 , ..., ⋆Am and ⋆B1 , ..., ⋆Bm , and we put Ai at ⋆Ai

and Bj at ⋆Bj
.

The process of differentiation in the expression (Am· · ·A1)(B1· · ·Bn) produces a sum
of terms where each “linear factor” in Am· · ·A1 differentiates some “linear factor” in
B1· · ·Bn. These terms are parametrized by injective maps ι : A = ⊔Ai→֒B = ⊔Bj (“the
α-factor of Am· · ·A1 differentiates the ι(α)-factor of B1· · ·Bn”).

We can represent the ι-term by welding the petals α ∈ A and ι(α) ∈ B into a segment.
Then the ι-term is graphically encoded as an “(a•, b•)-bigraph with tails” γ.

Since the derivative vλ of λ ∈ V ∗ by v ∈ V is just the contraction 〈v, λ〉, the ι-summand
can be described as the the “γ-contraction” 〈A1· · ·Am, B1· · ·Bn〉γ of tensors A1· · ·Am ∈
SV and B1· · ·Bn ∈ S(V ∗). This gives

(Am· · ·A1)(B1· · ·Bn) =

∫

γ∈ (deg(A•),deg(B•)−bigraphs with tails

〈A1· · ·Am, B1· · ·Bn〉γ.

MODULI???

(b) The evaluation at zero kills the terms for which ι is not surjective so the sum reduces
to bijections ι (these terms are not affected by evaluation), i.e., to “(A,B)-graphs” (we
disallow tails).

〈Am· · ·A1, B1· · ·Bn〉 =
∑

γ∈ (A,B)−graphs

〈A1· · ·Am, B1· · ·Bn〉γ.

xx

Lemma. Problem. Let A1, ..., Am ∈ S(V ) and B1, ..., Bn ∈ S(V ∗) be homogeneous
tensors of degrees ai = deg(Ai), bj = deg(Bj).

(a) We consider two calculations:
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(1) The derivative (Am· · ·A1)(B1· · ·Bn) ∈ S(V ∗).

(2) The pairing 〈Am· · ·A1, B1· · ·Bn〉 def
= (Am· · ·A1)(B1· · ·Bn) (0) ∈ R.

A graphical presentation of calculations. (1) We draw a picture consisting of two rows
of flowers, the upper row represents B1· · ·Bn ∈ S(V ∗) and the lower row represents
A1· · ·Am ∈ S(V ). (The petals in the upper row represent copies of V ∗ and the petals in
the lower row represent copies of V .) The upper row consists of flowers ⋆A1 , ..., ⋆Am of
sizes |Ai| = ai and the lower row of flowers ⋆B1 , ..., ⋆Bm of sizes |Bj| = bj, so that we can
label ⋆Ai

with the tensor Ai and ⋆Bj
with Bj.

The process of differentiation in (Am· · ·A1)(B1· · ·Bn) produces a sum of terms where each
“linear factor” in Am· · ·A1 differentiates some “linear factor” in B1· · ·Bn. These terms
are parametrized by injective maps ι : A = ⊔Ai −→ B = ⊔Bj (“the α-factor of Am· · ·A1

differentiates the ι(α)-factor of B1· · ·Bn”).

We can represent the ι term by welding the petals α ∈ A and ι(α) ∈ B into a segment.
So, ι is graphically encoded as an “(A,B)-graph with tails” γ, where the phrase means a
graph γ which consists of (i) vertices which are partitioned into two subsets A and B, (ii)
edges that go between A and B, and (ii) tails (=petals=prongs) stemming from vertices
in B.

Since the derivative vλ of λ ∈ V ∗ by v ∈ V is just the contraction 〈v, λ〉, the summand can
be described as the the “γ-contraction” 〈A1· · ·Am, B1· · ·Bn〉γ of tensors A1· · ·Am ∈ SV
and B1· · ·Bn ∈ S(V ∗). So,

(Am· · ·A1)(B1· · ·Bn) =
∑

γ∈ (A,B)−graphs with tails

〈A1· · ·Am, B1· · ·Bn〉γ.

(b) The evaluation at zero kills the terms for which ι is not surjective so the sum reduces
to bijections ι (these terms are not affected by evaluation), i.e., to “(A,B)-graphs” (we
disallow tails).

〈Am· · ·A1, B1· · ·Bn〉 =
∑

γ∈ (A,B)−graphs

〈A1· · ·Am, B1· · ·Bn〉γ.

yy

A. The case when all Ai are of degree 2.

B. The case when all Ai are the same and of degree 2.

3.3. Feynman integrals in the case of free action (Wick formula). The Wick for-
mula is a special case of the Feynman expansion formula that we cover in the next section
3.4. The general case is a perturbation of the special case by adding an infinitesimally
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small “interaction” term in the action. We use the same proofs for both, so this section
can be viewed as a warm up (with less combinatorics) for the next one.(14)

3.3.1. Wick’s theorem. It calculates correlators of linear functions for the “free” action
S = −g/2.

By a pairing on a set A we mean a partition of A into pairs of distinct elements. So, a
partition of A is a family of disjoint two element subsets Γ =

{
{p1, q1}, ..., {pM , qM}

}
that

covers A. However, no order is chosen on the pairs nor on the of elements of any pair.
We denote by PaiN the set of all pairings Γ of the set {1, ..., N}

Theorem. The free correlator of linear functionals φi ∈ V ∗ is the sum of all products of
“contractions” g(φi, φj) of pairs of functionals with respect to the “inverse” inner product
g on V ∗ :

〈φ1, ..., φN〉free =
∑

Γ∈PaiN

∏

{i,j}∈Γ

g∗(φi, φj).

Our proof will use the Laplace transform.

3.3.2. A proof of Wick formula. We know that 〈φ〉free is the derivative

φ(eg
∗/2) (0) =

∞∑

M=0

φN · · ·φ1
(g∗/2)M

M !
(0).

If N is odd this is zero and the same is true for the RHS since PaiN = ∅. So let N be
even, then all terms are zero except for M = N/2, so

〈φ〉free = φN · · ·φ1
(g∗/2)M

M !
(0) =

1

2MM !
φN · · ·φ1 g

∗M .

The differentiation φN · · ·φ1 g
∗M produces N ! terms where N factors of φ1· · ·φ1 differen-

tiate N -factors of g∗M (g∗ is a sum of terms which are products of two linear factors!).
Since the double derivative φpj

φqj g
∗ of the metric g∗ is the contraction g∗(φpj

, φqj) of the

metric g∗ with φpj
⊗φqj , these are of the form

φp1φq1 g
∗ · · · φpM

φqM g∗ = g∗(φp1 , φq1)· · ·g∗(φpM
, φqM )

where (p1, ..., pM , q1, ..., qM ) is a permutation of (1, ..., N).

Such summand defines a partition of indices 1, ..., N into pairs pj, qj, we say that the
collection of pairs Γ =

{
{p1, q1}, ..., {pM , qM}

}
is a pairing on the set {1, .., N}. The value

of the summand g∗(φp1 , φq1)· · ·g∗(φp1 , φq1) can be written as
∏
{p,q}∈Γ g∗(φp, φq}. So it only

depends on the pairing Γ but not on the full data of a permutation (p1, ..., pM , q1, ..., qM ).

14Alternatively, one could deduce the Feynman expansion by applying Wick formula infinitely many
times.
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The multiple ways to get the same pairing Γ from different permutations
(p1, ..., pM , q1, ..., qM) introduce repetitions in the sum for the derivative (φ1· · ·φ1)g

∗M . In
order to upgrade a pairing Γ to a permutation (p1, ..., pM , q1, ..., qM ), we need to choose
for each of the M pairs {p, q} in Γ, which of the M -factors in g∗M it will differentiate,
and also whether φp will differentiate the first or the second factor of the quadratic

expression g∗. This gives 2M choices, hence

(φ1· · ·φ1)g
∗M = 2MM !

∑

Γ∈PaiN

∏

{p,q}∈Γ

g∗(φp, φq}.

3.3.3. A graphical interpretation of the calculation. Graphically, the pairing Γ is repre-
sented by a simple graph consisting of M segments that join pairs of points p, q that lie Γ.
We will now go once again through the proof 3.3.2 of Wick formula, in order to formulate
how this graph (i.e., the corresponding summand of 〈φ〉free) arises through the process of
differentiation. This is how Feynman graphs will arise.

We draw a picture consisting of two rows of N points each. The points in the upper row
represent copies of V ∗ and the points in the lower row represent copies of V .

The points in the upper row are labeled by 1, ..., N and on the point i we “put” φi ∈ V ∗.
Then the first row represents the product of linear functions φ = φ1· · ·φN which, when
viewed as a tensor, is an element of V⊗· · ·⊗V = V ⊗n.

The points in the lower row are joined into M = N/2 segments, each representing a copy
of S2V . On each segment [aj, bj] we “put” one copy of g∗ ∈ S2V . More precisely, the
label g∗ =

∑
v′k⊗v′′k is a sum of labels vk⊗v′k and we “put” v′k on the point aj and v′′k on

bj. (Which point is the first does not matter because g∗ is a symmetric tensor!) Now, the
second row represents the product the element g∗M of (S2V )⊗M .

The process of differentiating g∗M by φ1· · ·φ1 produces N ! terms where N factors of

φ1· · ·φ1 differentiate N -factors of g∗M (g∗ is a sum of terms which are products of two fac-
tors!). Since the double derivative φp1φq1g

∗ of the metric g∗ is the contraction g∗(φp1 , φq1)

of the metric g∗ with φp1⊗φq1 , these are of the form

φp1φq1g
∗ · φpM

φqMg
∗ = g∗(φp1 , φq1)· · ·g∗(φp1 , φq1)

where p1, ..., pM , q1, ..., qM is a permutation of 1, ..., N . We can represent such term by
joining the points aj, bj in the jth segment respectively with the points pj, qj in the upper
row, by means of segments.

Notice that now the points 1, ..., N are joined in pairs pj, qj by segments (each of which
consists of three pieces). We say that the collection of pairs Γ =

{
{p1, q1}, ..., {pM , qM}

}

is a pairing on the set {1, .., N}. The value of the summand g∗(φp1 , φq1)· · ·g∗(φp1 , φq1) can
be written as

∏
{p,q}∈Γ g∗(φp, φq}. So the value of the summand only depends on how we

paired the points in the upper row but not at all on how we factored this pairing through
the lower row – it does not require the full data of a permutation (p1, ..., pM , q1, ..., qM).
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Multiple ways to get the same pairing Γ from different permutations (p1, ..., pM , q1, ..., qM ,
i.e., to factor the pairing in the upper row through points in the lower row, introduce
repetitions in the sum for the derivative (φ1· · ·φ1)g

∗M . In order to factor a pairing Γ
through the lower row we need to choose for each of the M pairs {p, q} in Γ one of
M segments [aj, bj] in the lower row (M ! choices) and also to choose whether p will be
connected to aj or bj (2M choices). Therefore,

(φ1· · ·φ1)g
∗M = 2MM !

∑

Γ∈PaiN

∏

{p,q}∈Γ

g∗(φp, φq}.

Therefore, if we denote by PaiN the set of all pairings Γ of the set {1, ..., N}
(φ1· · ·φ1)g

∗M = 2MM !
∑

Γ∈PaiN

∏

{p,q}∈Γ

g∗(φp, φq}.

3.4. Feynman expansion of expectation integrals. Let GN be the moduli of graphs
with N tails colored 1, ..., N (see the appendix 3.6.1). By an integral

∫
C∋c

w(c) over a
category C we mean the sum over the set π0(C) of isomorphism classes [c] of objects c in
C, weighed using the automorphisms of c

∫

c∈C

w(c)
def
=

∑

[c]∈π0(C)

1

|AutC(c)|
.

The “inverse” inner product g∗ on V ∗ lies in S2V . We use terminology propagator for any
symmetric degree two tensors P ∈ S2V .

3.4.1. (γ, P )-amplitude wγP (I). For a graph γ ∈ GN and any propagator P, i.e., any
element P ∈ S2V , we define

wγP(I, φ)
def
= 〈Pγ, (I, φ)γ〉

as the γ-contraction of tensors Pγ ∈ SV and (I, φ)γ ∈ S(V ∗) which is defined in the
following way.

We put the label P on each edge of the graph γ, we put φi ∈ V ∗ on the vertex of γ
labeled by i and Ik ∈ Sk(V ∗) on the unlabeled k-valent vertices. Then Pγ is the tensor
product over edges e ∈ E(γ): Pγ = γEγ while (I, φ)γ is the tensor product over vertices:
(I, φ)γ = ⊗N1 φi ⊗ ⊗v∈V (γ) Ik(v), where V (γ) is the set of unlabeled vertices and k(v) is
the valency of the unlabeled vertex v.

Again, the precise meaning of labeling is that the labels Ik are sums of labels of the form
α1⊗· · ·αk with αi ∈ V ∗, and we place each factor αi at one petal of the flower. Because
Ik is a symmetric tensor it does not matter how we order the petals. Similarly g∗ is a sum
of terms a1⊗a2 with ai ∈ V and we place ai at the ith boundary point of the segment.

In this way, each prong p of γ carries two kinds of labels: a vector in V from the edge
that p lies on and a linear functional in V ∗ from the vertex the prong starts at. The
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γ-contraction means that we contract these “linear factors” of Pγ and (I, φ)γ along the
prongs of γ.

3.4.2. Theorem. Assume that the interaction I is infinitesimal. The correlator of linear
functionals φ1, ..., φN ∈ V ∗

〈φ1, ..., φN〉− g
2
+I

def
=

∫

V

dx e−
g
2
(x)+I(x) φ1(x)· · ·φN(x)

can be viewed as

(a) [Feynman expansion.] The integral over the moduli of graphs GN of (γ, g∗)-weights
wγg∗(I, φ) of the pair (I, φ) : ∫

Γ∈GN

wγP (I, φ).

(b) The pairing (by differentiating and evaluating at zero) of the infinite order differential

operator e−
1
2
g∗ and the formal function eIφ

e−
1
2
g∗(eIφ) (0).

Remark. The infinitesimality assumption means that Ik = gkĨk with Ik ∈ Sk(V ∗) and gk’s
some infinitesimal parameters. Then eI is a a formal power series in V ∗ and g0, g1, ..., and
the integral is well defined as an element of C[[g0, g1, ...]] by integrating the coefficients of
powers g~n – these integrals are the free correlators calculated by the Wick formula.

So, the only problem is to organize the resulting huge sum in a reasonable way. This is
achieved as in the proof of the Wick formula, except that the class of graphs that appear
is GN rather than PaiN .

3.4.3. A proof of the Feynman expansion up to constants vγ. Let φ =
∏N

i=1 φi. The proof
is the same as for Wick formula, except that this time we differentiate by eIφ rather than
just by φ. In the manipulation

〈φ〉− g
2
+I

∫

V

dx e−
g
2 eIφ = L(eIφ e−

g
2 ) (0)

(⋆)
= [eIφ(Le− g

2 )] (0) = [eIφ(e−g
∗/2)] (0) ,

the step (⋆) is again the lemma 3.2.3.b – it applies because eIφ is a formal sum of poly-
nomials.

Now, part (a) is clear since the pairing of A ∈ SV, B ∈ S(V ∗) by 〈A,B〉 def
= (AB)(0) is

symmetric, so

[eIφ(e−g
∗/2)] (0) = [e−g

∗/2(eIφ)] (0).

(The symmetry persists for A ∈ ŜV, B ∈ Ŝ(V ∗) as long as the pairings are defined – for
instance when the coefficients of A are infinitesimals.)
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The exponential of I is the sum over N def
= ⊕∞k=0 N

eI =
∞∏

k=0

eIk/k! =
∞∏

k=0

∞∑

nk=0

Ink
k

(k!)nk
=

∑

~n∈N

∞∏

k=0

Ink
k

(k!)nk
.

We draw a picture consisting of two rows, the upper row represents the numerator
φ

∏∞
k=0 Ink

k of the ~n-summand of eIφ and the lower row represents the numerator of
the M -summand g∗M . (For a moment we forget the constants

∏
k

1
(k!)nk

and 1
M !

.)

The type of φ
∏∞

k=0 Ink
k is drawn as a flower patch which starts with N points labeled

by 1, ..., N followed by nk k-valent flowers for k = 0, 1, .... We put φi ∈ V ∗ on the point
labeled i and Ik ∈ Sk(V ∗) on the unlabeled k-valent flowers. In the lower row we draw
M segments, each labeled by g∗.(15)

The process of differentiating g∗M by φ1· · ·φ1

∏∞
k=0 Ik

nk and then evaluating at 0 ∈ V
produces a sum of terms corresponding to choices of bijections ι of points in the upper
row (the N labeled point and all the outer ends of petals) and points in the lower row
(the ends of segments) – such bijection is a way for labels on the upper row (a bunch
of elements of V ∗ indexed by the upper points) to differentiate the labels in the low row
(a bunch of elements of V , considered as linear functions on V ∗ and indexed by lower
points).

A bijection p′
ι↔ p′′ of upper and lower points can be graphically presented by joining

points p′ and p′′ = ι(ψ′) by a segment. This produces a graph with tails γ whose vertices
are the roots of flowers in the upper row and each edge between roots r1 to r2 is obtained
by patching together five parts: two petals at roots r1 at r2 (omitted if the valency of
the root is 0), two segments given by the bijection and one segment from the lower row.
Since γ has N vertices labeled by 1, ..., N we can view γ as an object in GN .

The derivative αv of v ∈ V by α ∈ V ∗ is just the contraction 〈α, v〉, so the result of the

differentiation along the bijection ι is precisely the contraction wγP (I, φ)
def
= 〈Pγ, (I, φ)γ〉.

We have now established that the integral is a sum over isomorphism classes [γ] ∈ π0(GN)
of graphs γ ∈ GN)

∫

V

dx e−
g
2
(x)+I(x) φ1(x)· · ·φN(x) =

∑

[γ]∈π0(GN )

vγ · wγP (I, φ).

This involves some constants vγ which incorporate the constants
∏

k
1

(k!)nk
and 1

M !
above

as well as certain repetitions: different bijections ι may produce isomorphic graphs γ. It
remains to prove the following lemma:

15The more precise meaning of labeling is that the labels Ik are sums of labels of the form α1⊗· · ·αk

with αi ∈ V ∗, and we place each factor αi at one petal of the flower. Because Ik is a symmetric tensor
it does not matter how we order the petals. Similarly g∗ is a sum of terms a1⊗a2 with ai ∈ V and we
place ai at the ith boundary point of the segment.
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3.4.4. Lemma. The constant vγ is the volume 1
|Aut(γ)|

of the class [γ] in π0(GN).

It is not difficult to prove this lemma directly, i.e., combinatorially by counting the above
repetitions. We will deduce it from the categorified version of the above construction.

3.4.5. Category theory. The observation that graphs have automorphisms means that the
totality of graphs (of a given kind) is not a set but a category. The categorical language
turns out to be illuminating in Feynman expansions (though one could do fine without
it).

One may make a case that one psychological difference between mathematicians and
Fascist’s is that the former are raised in Set Theory and latter in Category Theory. The
first question about an object that one asks in Set Theory is What is it?. In Category
Theory the question is How does it relate to others?

3.4.6. Groupoids (stacks) and the notion of moduli. The “totality” (or “moduli”) of ob-
jects of a certain kind K is often in itself an interesting (important) object of study. This
totality is most naively viewed as a set of all K-objects (example: various sets of num-
bers). However, if there is a notion of isomorphism of objects of the kind K then objects
isomorphic to a given object a are naturally viewed as repetitions of a, so a better notion
of totality is the set π0(K) of isomorphism classes [a] of K-objects a. It turns out that by
passing from K to the set π0(K) the information that we keep is too little, i.e., compu-
tations do not work well. The efficient strategy is to consider the totality of K-objects as
the category whose objects are K-objects and whose morphisms are the isomorphisms of
K-objects.

The categories we get in this way are the groupoid categories – categories such that all
morphisms are isomorphisms (“invertible”). Another name for groupoid categories is or
stacks.

Example. The moduli of objects of a given category C is the groupoid category C∗ ob-
tained by throwing away the non-invertible morphisms, so objects are the same as before
Ob(C∗) = Ob(C), and morphisms Mor(C∗) = Isom(C) are the isomorphisms in C.

Example. For instance, the moduli FS of finite sets is the groupoid part FS∗ of the
category FS of finite sets.

3.4.7. Integrals over stacks. A functor F : C −→S from a stack C to a set S is the same
as a function f : π0(C) −→S. We will also call it a function from C to S.

For any stack C the set π0(C) has a canonical measure, for any object x of C the measure
of the isomorphism class [x] ∈ π0(C) is 1/|AutC(x)| ≥ 0.

The integral of a C-valued function f on a stack C is defined as the integral of the
corresponding function f : π0(C) → C, i.e., the sum over isomorphism classes [x]π0(C)
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of objects x in C ∫

C

dx f(x)
def
=

∑

[a]∈π0(C)

1

|Aut(a)|f(a).

The categorical nature of the construction is reflected in the change of variable formula:
if a functor F : D −→C is an em equivalence of categories, then

∫
D
f◦F =

∫
C
f .

3.4.8. Monoidal categories (3.8). A binary operation on a category C is a functor C×C m−→
C. We say that (C,m) is a monoidal category if m is a associative and unital in an
appropriate sense. A tensor category is a monoidal category such that m is commutative
(again, in an appropriate sense).

Just as to any set S we can associate a free group generated by S, to any category C we
can associate a free tensor category C⊗ generated by C,

Example. The moduli FS of finite sets is a tensor category with the operation ⊔ of disjoint
union. Actually, (FS,⊔) is (equivalent to) the free tensor category pt⊗ generated by the
“point” category pt which has one object and one morphism.

More generally, we will consider various categories of graphs G, T G,Pai,Par, ... as tensor
categories for the operation ⊔ of disjoint union. All these will be considered as tensor
categories over (FS,⊔) via projection to prongs. The prefix “c” will mean the submoduli
of nonempty connected graphs.

Lemma. For any class of graphs G closed under finite disjoint unions, the moduli (G,⊔) is
a free tensor category cG⊗ generated by the submoduli cG of connected nonempty graphs
in G

In particular, the following are free tensor categories

(1) (Par,⊔) ∼= cPar⊗ ∼= FS⊗ since the connected partitions are the same as finite
sets: cPar ∼= FS.

(2) (Pai,⊔) ∼= cPai⊗ ∼= FS2
⊗ since the connected pairings are the same as 2-element

sets: cPai ∼= FS2.
(3) (G,⊔) ∼= cG⊗ and (T G,⊔) ∼= cFG⊗.

3.4.9. A combinatorial principle (see 3.8). It says that the integrals over connected graphs
are logarithms of the corresponding integrals over all graphs. The reason is really that for
a class of graphs G (closed under finite disjoint unions), the moduli (G,⊔) is a free tensor
category cG⊗ generated by the submoduli cG of connected nonempty graphs in G (see
lemma ). Our principle is then an example of the following property of the construction
of a free tensor category (C⊗,⊔) from a category C.
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Lemma. Any function w : C → C on G extends to a multiplicative function (C⊗,⊔)
w⊗

−−→
(C, ·), and then ∫

C⊗

w⊗ = exp(

∫

C

w).

3.4.10. Fibered products of tensor categories. The fibered product A×CB of the diagram

of categories A α−→ C β←− B is the category of triples (a, b, ι) where a ∈ A, b ∈ B and
ι : α(a) ∼= β(b) is an isomorphism in C.

The fibered product of a diagram of tensor categories (A,⊗)
α−→ (C,⊗)

β←− (B,⊗), is the
fibered product of categories A×CB, with the operation

(a, b;αa
ι−→
∼=
βb)⊗(a′, b′;αa′

ι′−→
∼=
βb′)

def
=

(
a⊗a′, b⊗b′;α(a⊗a′) ι⊗ι′−−→

∼=
β(b⊗b′)

)
..

Lemma. (a) The moduli G of graphs is (as a tensor category) the fibered product of
partitions and pairings over finite sets

(G,⊔) ∼= (Par,⊔)×(FS,⊔)(Pai,⊔) ∼= FS⊗×(FS,⊔)FS2
⊗.

(a’) Similarly, the moduli GN of graphs with N univalent vertices colored by 1, ..., N , is (as
a tensor category) the fibered product of the moduli ParN of partitions with N univalent
vertices colored by 1, ..., N , and the moduli of pairings:

(GN ,⊔) ∼= (ParN ,⊔)×(FS,⊔)(Pai,⊔) ∼= FS⊗×(FS,⊔)FS2
⊗.

(b) As a tensor category, the moduli T G of Feynman graphs (graphs with tails) is a
the fibered product of pairings and of marked partitions (the marking is a subset of
prongs)(16)) over the the tensor category (FS,⊔):

(T G,⊔) ∼= (Pai,⊔)×(FS,⊔) (mPar,⊔).

Proof. (a) A graph Γ = (P
σ←− P

π−→ V ) defines a a compatible triple of a pairing

(P −→P/{1, σ}) ∈ Pai, a partition (P
π−→ V ) ∈ Par, and a set P ∈ FS. This gives the

map G −→ Pai×FSPar.

In the opposite direction, an object of Pai×FSPar consists of a pairing (P ′′,Γ), a partition

(P ′
π−→ V ) and an isomorphism ι : P ′

∼=−→P ′′ in FS. It defines a graph Γ = (P
σ←− P π−→ V )

with P = P ′ and the involution σ characterized by {ιp, ισp} for all p ∈ P .

The proof of (b) is the same.

16This is the subset of prongs which will be connected to prongs of the pairing. The remaining prongs
represent the remaining degrees of freedom.
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3.4.11. Proof of lemma 3.4.4. We will state the proof for the case when φ = 1, i.e., only
the calculation of the free partition function. The general case of expectation integrals is
proved the same except that one uses part (a’) of the lemma 3.4.10 rather than the part
(a).

First, I =
∑∞

i=0 Ik/k! can be viewed as
∫
FS

I• where I• : FS → SV ∗⊇ Ŝ(V ∗) sends

A ∈ FS to I•(A)
def
= I|A|. Similarly, eg

∗
=

∫
FS2

g∗ where g∗ : FS2 → SV is the constant

functor g∗(A) = g∗ ∈ S2V , A ∈ FS2. Now,

〈eg∗/2, eI〉 = 〈e
R

FS I• , e
R

FS2
g〉 = 〈

∫

FS⊗

I•
⊗

,

∫

FS2
⊗

g⊗〉

= 〈
∫

Par

I•
⊗

,

∫

Pai

g⊗〉 =

∫

Par∋α

∫

Pai∋β

〈I•
⊗

(α), g⊗(β)〉 = ,

The integrand, i.e., the pairing

〈I•
⊗

(α), g⊗(β)〉 = I•
⊗

(α)g⊗(β) (0)

is a sum of ι-contractions
∫

ι∈IsomFS [prongs(α),prongs(β)]

〈I•
⊗

(α), g⊗(β)〉ι

over bijections ι of prongs of the partition α and prongs of the pairing β. The triple

(α, β, ι) is the same as a graph γ ∈ G, and then the ι-contraction 〈I•
⊗

(α), g⊗(β)〉ι is just
the definition 〈Iγ, Pγ〉γ of the amplitude wγg∗(I). So, we get

∫

G∋γ

wγg∗(I).

3.5. Variations of the Feynman expansion. We will also consider refinements of the
Feynman expansion when I is allowed to be a function of ℏ (3.5.4) or when the space of
fields is graded (3.9.2). The effect of the additional structure is that summands decompose
into finer terms which are indexed by graphs with additional data.

Finally, we consider the effect of an additive shift in the action S in 3.5.5.

3.5.1. Propagators. The data (E , g, I) for an abstract Feynman expansion of correlator
integrals consist of a finite dimensional vector space E , a positive metric g on E and an
infinitesimal function I on E . The correlator integral 〈φ〉− g

2
+I is then calculated in terms

of the dual metric g∗ on E∗ as

〈φ〉g∗,I def
=

∫

GN∋γ

wγg∗(I, φ).
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We notice that the construction 〈φ〉g∗,I generalizes from metrics g∗ to arbitrary symmetric
tensors P ∈ S2E . The expression

〈φ〉P,I def
=

∫

GN∋γ

wγP(I, φ)

still makes sense since one can still define the tensors Pγ ∈ SV and contract them with

tensors (I, φ)γ ∈ S(V ∗) to define the numbers wγP(I, φ)
def
= 〈Pγ, (I, φ)γ〉.

3.5.2. The logarithm W of the partition function (“free energy”) and the connected Feyn-
man graphs. Taking logarithm does not seem reasonable for correlators, we restrict our-
selves to the partition function

Z =

∫

V

dx e−
g
2
+I =

∫

γ∈G

wγP (I).

Then the constant term (i.e., modulo infinitesimals) is 1, so the logarithm is defined.

Theorem. (a) The formal logarithm W = ln(Z) is given by the same integral but now
restricted to the connected nonempty graphs:

W =

∫

γ∈cG

wγP (I).

(b) When free energy is viewed as a function W (I) of the interaction I, its linearization
dIW is a linear functional on TI(interactions) which is the space of (naive) quantum ob-
servables. The value of the differential dIW on an observable O (the directional derivative
of W at I in the direction of O) is the (normalized!) expectation

(dIW )O =
〈O〉g,I
〈1〉g,I

.

Proof. (a) This is a case of lemma 3.4.9 since G is the free tensor category cG⊗ generated

by category cG and wγ
′⊔γ′′

P (I) = wγ
′

P (I) · wγ′′P (I).(17)

(b) W (I) = log[
∫
V
e−

g
2
+I , hence

(dIW )(O) =
1∫

V
e−

g
2
+I ]

∫

V

e−
g
2
+IO =

〈O〉g,I
〈1〉g,I

.

17This last property fails for expectation amplitudes wγ
P (I, φ).



30

Remarks. (0) Similarly, the correlators (O1, ...,On)7→ 〈O1, ...,On〉g,I are the multideriva-
tives of W at I.

(1) This shows that the free energy construction I 7→W (I) is the fundamental object –
the true correlators are just its Taylor expansions.(18)

(2) Also, it shows that observables naturally appear as first order deformations of the
action!

3.5.3. Adding the Planck constant ℏ: loop expansion of free energy and classical limits.
Here we consider how correlators change when we vary the action according to the scale
ℏ > 0. We replace the action S by 1

ℏ
S, so the expectation integral becomes

〈φ〉ℏ def
=

∫

V

dx e
1
ℏ
S[v]φ =

∫

V

dv e
1
ℏ
(− g

2
+I)φ.

A. Adding the Planck constant to correlators. As we will see, if taken literally, this would
only be reasonable in finite dimensional Feynman integrals.

Lemma. The ℏ-expectation integral of a homogeneous polynomial φ is (χγ is the Euler
characteristic of the graph γ)

〈φ〉ℏ = ℏ
1
2
[deg(φ)+dim(V )]

∫

GN∋γ

ℏ−χγ wγP (I, φ).

Proof. In order to reduce the integral to the kind we had before, we change the variable
by x = ℏ

1
2 ·u, so that dx = ℏ

1
2

dim(V )du and

S(x)

ℏ
= −g(ℏ

1
2u)

2ℏ
+

1

ℏ

∑

k

Ik(ℏ
1
2u)

k!
= −g(u)

2
+

1

ℏ

∑

k

ℏ
1
2
k Ik(u)

k!
.

Therefore, the ℏ-expectation is

〈φ〉ℏ =

∫

V

du ℏ
1
2

dim(V ) · e− g(u)
2

+ 1
ℏ
I(ℏ

1
2 u) · φ(ℏ

1
2u)

= ℏ
1
2
[dim(V )+deg(φ)]

∫

V

du e−
g(u)

2
+ 1

ℏ

P

k ℏ
k
2

Ik(u)

i! φ(u).

The second factor is the standard expectation integral except that Ik is replaced by
ℏ−1·ℏ i

2 . This means that for γ ∈ GN , the amplitude wγP (I, φ) has been multiplied by a
certain power of ℏ. We count the contributions to this power in the following way: each
uncolored vertex contributes −1 (from Ik 7→ 1

ℏ
Ii since tensors Ik are placed at vertices) and

each prong contributes 1
2

(from Ii 7→ℏ
i
2 since k is the number of prongs at the vertex at

which we placed Ik). The total is the number of edges (each edge contains two prongs)
minus the number of vertices, i.e., −χγ .

18Free energy will later generalize to operators WP on the space of interactions.
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B. Loop expansion of free energy. While in the expectation integrals the power of ℏ was
the negative of the Euler characteristic of a graph, the powers of ℏ in the normalized free
energy are governed by the number b1(γ) (the first Betti number) of independent loops
in the graph.

In order to have a quantity meaningful in the infinite dimensional setting we normalize
the expectations to ℏ−

1
2

dim(V )〈φ〉ℏ. In particular, we normalize the partition function Zℏ

to

Z̃h
def
= ℏ−

1
2

dim(V )·Zh =

∫

G

ℏ
−χ 1

2 wγP (I).

Corollary. The ℏ-expansion of the logarithm of the normalized partition function is gov-
erned by the number of loops in a graph

log(Z̃ℏ) =

∫

γ∈cG

ℏ−χγ wγP (I) =
∑

n≥0

ℏn−1Wn−loop

= ℏ−1WTrees + W1−loop graphs + ℏ·W2−loop graphs + ℏ2·W3−loop graphs + · · ·;
for

Wn−loop graphs =

∫

γ∈cGn−loop

wγP (I) ;

where cGn−loop⊆G is the submoduli of connected nonempty graphs γ with b1(γ) = n.

Remarks. (0) The connected graphs without loops are called trees. We sometimes call
b1(γ) the genus gΓ of the graph γ.

(1) log(Z̃ℏ) has at most the first order pole at 0 and the residue at ℏ = 0 is W0 also called
WTrees.

Proof. Since Z̃ℏ) =
∫
γ∈G

ℏ−χγ wγP (I) and ℏ−χγ wγP (I) is multiplicative in (G,⊔), we have

log(Z̃ℏ) =
∫
γ∈cG

ℏ−χγ wγP (I).

For connected graphs the Euler characteristic simplifies since χγ = b0− b1 = 1− b1, hence
−χγ = b1 − 1.

Theorem. All coefficients in the loop expansion are classical quantities, i.e., they have
meaning in classical physics (see ??).

3.5.4. Allowing Planck constant ℏ in the interaction term I. We will quantize classical
actions S to effective (scaled) quantum actions which are families of actions S[L] valid
at various scales L. The free part of the action will not be affected: S[L] = −g

2
+ I[L],

but the interaction terms of quantum actions S[L] will necessarily depend on the Planck
constant ℏ.
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When interaction depends on ℏ,

I = sum Ik/k! and Ik =
∑

Iikℏ
i,

the Feynman machinery gets refined. The product eI/ℏ =
∏
eIk/k! which gave terms∏

k Iσk
k now becomes

∏
eIikℏi/k! which gives terms

∏
i,k (Iikℏ

i)σik .

This means that on an k-valent flower we do not put the whole Ik but only one of its
summands Iikℏ

i. The effect is that we need to color the root v of a flower by some gv ∈ N

(called the “genus” of the vertex), then we put Iikℏ
i on the flower of valency k and genus

i.

So, the corresponding class of graphs G•N are pairs Γ = (γ, g) where γ ∈ GN and the genus
function g maps the set Vγ of uncolored vertices of γ to N. We call them graded graphs
(graded by genus).

Now, the refined Feynman expansion takes form

〈φ〉P,I =

∫

Γ∈G•N

ℏ−χΓ+
P

v gv wΓ
P (I, φ)

where amplitudes are defined in the same way. The logarithm of the partition function is
then

log[Z̃ℏ(P, I)] =

∫

Γ∈ cG•N

ℏgΓ wΓ
P (I, φ);

where we only use the connected nonempty graphs‘ and the genus of a graph is defined
as

gΓ
def
= b1(Γ) +

∑

v∈VΓ

gv.

3.5.5. Correlators as functions on fields (“integrals with additive shift”). Here we notice
that Feynman’s correlator integrals are a recording of a flow on the space of fields generated
by the constant coefficient differential operator 1

2
g∗.

(A) Extension of correlators to functions on infinitesimal fields (by additive shifts). Here
we promote correlators from numbers to functions defined on infinitesimal elements a of

V , i.e., points of the formal neighborhood V̂ of 0 in V . This is done by shifting the
interaction function I and the observable φ by a :

〈φ〉g,I(a) def
=

∫

V

dx e−
g(x)

2
+I(a+x)φ(x+ a).

This is a deformation of the usual correlator 〈φ〉g,I which is now written as 〈φ〉g,I(0). In

particular, we have promoted the partition function Zg,I to a function of a ∈ V̂ by

Zg,I(a)
def
=

∫

V

dx e−
g(x)

2
+I(a+x).
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Remark. Alternatively, this means that the Gaussian probability distribution

e−
g(x)

2
+I(a+x)

has been shifted by a. (This is also the most natural point of view with respect to signs
of translations.) �

(B) Extension of graph-wights to polynomial functions on fields (by allowing tails). Let
T G be the class of graphs with tails. We extend the graph weight construction γ 7→wγg∗(I;φ)
from graphs to graphs with tails. For γ ∈ T G we define the amplitude wγg∗(I;φ) as a
homogeneous polynomial function on fields (of degree tγ), given by the γ-contraction

wγg∗(I;φ)
def
= 〈(g∗)γ, (I, φ)γ〉γ

of the tensor (I, φ)γ ∈ S(V ∗) by the tensor (g∗)γ ∈ SV .

Remark. The generalized notion of weights applies to a larger class of objects and has a
more sophisticated values (functions rather than just constants). On the other hand, the
extension in (A) was only in the direction of more sophisticated values (again, functions
rather than just constants).

(C) g∗-flow on fields. We will loosely talk of infinite order differential operators

Φt
def
= e

−1
2t
g∗

as “stochastic flow by 1
t
g∗” or the “time t g∗-flow” on the space of fields.

Remark. For t > 0 this is justified (at least under some positivity and in the finite
dimensional case) by the heat kernel theory, the heat kernel operator is then interpreted
as the pull-back of fields under the flow

Ktx = Φ∗tx, x ∈ E .

Lemma. The correlator function 〈φ〉g,I(a) is well defined for infinitesimal elements a of V
and can be represented as the pull-back under the −g∗-flow:

〈φ〉g,I = e
1
2
g∗(eIφ).

Proof. Denote the translation by a as (Taf)(x)
def
= f(x− a).

Since a is infinitesimal, (T−aI)(x) = I(a + x) is a well defined formal function on fields.
The Feynman expansion for shifted quantities T−aI and T−aIφ∫

V

dx e−
g(x)

2
+I(x+a)φ(x+ a) =

∫

V

dx e−
g
2
+Iaφa =

∫

γ∈G

wγg∗(Ia;φa)

can be computed (see the proof 3.4.3 of Feynman expansion) as eg
∗/2(eIaφa) (0). However,

since the differential operator g∗ is translation invariant, this is just the evaluation of the
derivative eg

∗/2(eIφ) at a.
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(D) The graph expansion.

Theorem. The correlator functions have Feynman expansion over graphs with tails

〈φ〉g,I(a) =

∫

γ∈T G

wγg∗(I;φ)(a).

Proof. We work on the expression from the lemma

〈φ〉g,I = e
1
2
g∗(eIφ).

In 3.4.3 we saw that the computation of eg
∗/2eI breaks into differentiation of products

φ1· · ·φ1

∏∞
k=0 Ik

nk by powers g∗M . This time we evaluate the derivatives at a rather than
at 0 ∈ V , the effect is that the summands we get are indexed by all injections ι of the
lower row (representing g∗M) into the upper row, rather than only the bijections ι.

Therefore, some of the prongs in the upper row may remain free and here we will plug
in a. The graphs that we get in this way will have “tails” and will therefore represent
functions on E , which we then evaluate at a.

3.6. Appendix A. Feynman graphs. We will consider graphs as combinatorial objects
or equivalently, as geometric objects. We pass between the two points of view whenever
convenient.

3.6.1. Graphs with tails. A graph is usually said to consist of vertices connected by edges.
For the correct notion of automorphisms of graphs we will take the point of view that a
graph consists of vertices, edges and prongs (the half-edges).(19)

Beyond the class G of graphs we will need a larger class T G of Feynman graphs or graphs
with tails, which is closed under the operation of cutting edges at the midpoint:

A Feynman graph (“F-graph”) is a diagram of finite sets

γ = (Pγ
σ←−Pγ π−→ Vγ)

where σ is an involution. We say that Vγ is the set of vertices and Pγ is the set of prongs.
More terminology:

• Prongs partition into the set of tails or external prongs Tγ = (Pγ)
σ and the set of

internal prongs Pγ − Tγ.
• The set of edges is the set of free orbits of the involution Eγ

def
= (Pγ − Tγ)/{1, σ}.

• For a vertex v ∈ Vγ , denote by Pv = Pγ,v
def
= π−1v the prongs rooted at v. Then

pv = |Pv| is the valency of v.
• tγ = |Tγ| is called the external valency of Γ.

19The non-standard addition of prongs makes difference in the case of loops, a loop now has a nontrivial
involution that switches its ends.
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Let T G be the moduli of F-graphs. Adding “c” to the notation (as in cFG), will always
mean that we consider the submoduli of connected nonempty objects.

Examples. (0) The ordinary graphs appear as the “no tails” subclass G of T G. This means
that one adds the requirement that the involution ι has no fixed points.

(1) We will also use the class T GN of graphs with tails endowed with a coloring of N tails
by 1, .., N ; and its subclass GN in which the only tails are the N colored tails.

Remark. (Alternative terminology.) Notice that in our terminology, tails do not end in

vertices. However there is another terminology where graph Γ = (PΓ
σ←− PΓ

π−→ VΓ) is
viewed as data Γ consisting of (i) vertices V Γ = VΓ⊔TΓ called inner and outer vertices,

(ii) prongs P Γ = PΓ and (iii) edges EΓ = EΓ⊔TΓ called inner and outer edges.(20)

3.6.2. The geometric realization of graphs. It is defined by

|Γ| def
= (PΓ×[0,

1

2
] ⊔ VΓ) ∼

where ∼ involves two kinds of identifications, for h ∈ PΓ

• (i) (h, 0) ∼ π(h) ∈ VΓ,
• (ii) (h, 1

2
) ∼ (σh, 1

2
).

The topological invariants of a graph Γ are defined as topological invariants of |Γ|.

Lemma. H1(|Γ|,Z) is torsion free.

Proof. One can pass from a graph Γ to a homotopic one by contracting one tail or a edge
which is not a loop.(21) Since contracting an edge decreases the number of vertices by one,
each connected component Γ is homotopic to a graph with one vertex and no prongs, i.e.,
a bouquet of circles.

Remark. In physics, H1(Γ,R) is regarded as the moduli of degrees of freedom (“extra
variables”) which are not determined by applying conservation laws at vertices. These
cause appearance of divergent integrals. The case of forests (“graphs without loops”) is
characterized by absence of these extra variables.

20I understand that this terminology is used in physics with a different intuition.
21But it is not OK to contract several non-loop edges at the same time because contracting the first

edge may make the next edge into a loop.



36

3.6.3. Partitions (flower patches). The graphs without edges (i.e., all prongs are tails) are

the same as maps P
π−→ V of finite sets, i.e., the same as partitions of P according to V ,

P ⊔v∈V π−1v.

Their geometric realizations are called flower patches – the connected components are
indexed by vertices v ∈ V and the component at v is the flower with the root v and the
set of petals (prongs) π−1v. The corresponding submoduli of T G is denoted Par or FP.

Notice that π−1v can be empty, then the flower is just one vertex, the root, without petals.

Cutting all edges in a geometric graph at midpoints gives the flower patch map of moduli

T G fp−→ Pai, Γ 7→fpΓ.

Another interesting functor is the action map

T G a−→FP, Γ 7→aΓ = Γ,

where Γ is obtained from Γ by contracting all edges (this causes some vertices to be
identified).

The moduli of flowers, i.e., the moduli cPar of connected (nonempty) flower patches, is

equivalent to the moduli of finite sets via FS ∼=−→cPar, S 7→⋆S, where ⋆S has one vertex,
and its set of prongs is S. Flower patches are the same as partitions, i.e., maps of finite
sets P

π−→ V (viewed as a partition of P by V , with some strata possibly empty).

The set of numerical partitions N = ⊕n∈N N consists of sequences (λ0, λ1, ...) ∈ NN with

compact supports. The order of a partition (P
p−→ V ) ∈ Par is the numerical partition

~n
P

p−→V

def
= (n0, n1, ...) where nk is the number of v ∈ V with |p−1v| = k. This gives the

order function ~n : P → N on the moduli of partitions.

3.6.4. Pairings. By a pairing on a finite set A we mean a partition A
p−→V of A into 2-

element subsets. So, their moduli Pai is a submoduli of partitions: Pai⊆ Par⊆ T G and the
geometric realizations are binary flower patches, i.e., such that each flower has precisely
two petals.

However, in Feynman calculus it is traditional to use a different interpretation of pairings
as graphs, i.e., a different embedding Pai→֒ G⊆T G. So, these graphs are simply disjoint
unions segments, i.e., graphs without tails such that each vertex v lies in precisely one

edge and this edge is not a loop. The relation between the two is that to a pairing A
p−→V

one attaches the graph Γ with the set of vertices A and edges given by V .

3.7. Appendix B. Stacks.

3.7.1. This is an introduction to the language of stacks.
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3.7.2. Categories. Notice that categories form a “category of all categories” Cat with
morphisms HomCat(A,B) given by functors: Fun(A,B).

3.7.3. Stacks. This is a certain class of spaces which generalize sets. The need for stacks
arises formally by a need of for the correct quotient X/G when a group G acts on a set
X. A more sophisticated origin of stacks is the moduli problem. CHECK The same.

The formal definition of stacks will be an algebraic one. A stack S is a groupoid category,
i.e., a category such that all morphisms are invertible.(22) The geometric view of S is to
view it as the quotient space Ob(S)/Mor(S), i.e., the set of objects of S taken “modulo
all identifications given by morphisms in S”.

Example. Any group G defines a stack B(G) called the classifying space of G. This is
the category with one object pt (“a point”) and Hom(pt, pt) = G. As a space this is the
quotient B(G) = pt/G of a point by the (trivial) action of the group G.

Any stack is equivalent to a disjoint unions of classifying spaces ⊔i∈I B(Gi). For all stacks
that we will consider the groups Gi are finite.

Notation. We denote the set of orbits of a group G on a set X by X//G while X/G means
the stack quotient of X by G, i.e., Ob(X/G) = X and HomX/G(x, y) = {g ∈ G; gx = y}.

3.7.4. Moduli stacks. The expression “moduli stack of objects in a category C” literally
means the corresponding groupoid subcategory C∗⊆C which has the same objects as C,
but morphisms in C∗ are now only the isomorphisms in C.

This is refinement of the notion of the set π0(C) of isomorphism classes of objects in C.
This notion usually does not contain enough information because (i) we are forgetting
the choices of isomorphisms of objects, (ii) different objects may have different amounts
of automorphisms.

3.7.5. Integrals. A functor F : C −→S from a stack C to a set S is the same as a function
f : π0(C) −→S. We will also call it a function from C to S.

For any stack C the set π0(C) has a canonical measure, For any object x of C the measure
of the isomorphism class [x] ∈ π0(C) is 1/|AutC(x)|.
Let k be a commutative topological ring which contains Q. Then for a k-valued function
f on a stack C, i.e., a functor f : C −→k, the integral of f over C is defined as the integral
of the corresponding function f : π0(C) → k, this is the sum over isomorphism classes
[x]π0(C) of objects x in C

∫

C

dx f(x)
def
=

∑

[a]∈π0(C)

1

|Aut(a)|f(a).

22More precisely this could be called “stacks of sets”. There are many other classes of stacks which
will not be needed here.
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In particular, the size |C| of a stack C is defined as

|C| def
=

∫

C

1.

Remark. When the sum is infinite this definition involves the question of convergence.(23)

3.7.6. Finite sets. Let FS be the moduli of finite sets, i.e., the groupoid category where
objects are finite sets and morphisms are bijections. Its connected components FSn, are
the moduli of sets of order n (n ≥ 0).

The automorphism group of a set A is denoted SA, in particular Sn = S〈n〉 for 〈n〉 =
{1, ..., n} is the usual permutation group.

The prefix O, for instance in OFS, will mean “ordered”. So, OFS is the stack of finite
ordered sets and |OFSn| = 1.

In terms of the usual category FS of finite sets (objects are finite sets and morphisms are
all functions between sets), FS is the corresponding groupoid category FS∗.

Lemma. [Baez-Dolan] |FS| = e.

Proof. The category FSn is equivalent to the classifying space pt/Sn.

3.7.7. Global sections of functors on stacks. Let S be a stack. For any category V we
consider the category Fun(S,V) of functors X : S → V with values in V . When we view
S as a space then the functors in Fun(S,V) are the same as sheaves on the space S with
values in the coefficient category V .(24)

In the local setting, i.e., when S = pt/G, a functor X : pt/G → V is the same as an
object c ∈ Ob(V) (here c = X (pt)), and an action a of G on c (this is the same as a map
a : G = Endpt/G(pt) −→ EndCC(c) which preserves compositions). When S ∼= ⊔i∈I Si
with SI ∼= pt/Gi then Fun(X ,V) ∼= Πi∈I Fun(Xi,V).

There are two notions Γ(S, F ), γ(S,F) of global sections of a functor F : S → V.

When S ∼= {a}/G for a point {a} then a functor F : S → V is given by an object F (a) ∈ V
and an action of G on F (a). Then

Γ(
pt

G
,F )

def
= F (a)G and γ(

pt

G
,F )

def
= F (a)G

23Sometimes we resolve it formally by modifying the natural on C by a function g : C −→ k̃. For

instance, we may take k̃ = k[[gα, α ∈ π0(C)]] if we want to keep all contributions separate.
24For the discrete Grothendieck topology on the category S.
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are the G-invariants in F (a) and the G-coinvariants for F (a).(25) In general, S is a dis-
joint union ⊔i∈I Si with Si ∼= {ai}/Gi and then Γ(⊔i∈I Si, F ) =

∏
i∈I Γ(Si, F |S) and

γ(⊔i∈I Si, F ) = ⊔i∈I γ(Si, F |S).

3.7.8. Functoriality of functors on stacks (with respect to change of stacks). For a map of

stacks π : S → T there are two direct image constructions Fun(S,V)
π!,π∗−−→ Fun(T ,V)

and one inverse image construction Fun(T ,V)
π!=π∗

−−−→ Fun(S,V).

The inverse image means that G : T → V gives G◦π : S → V which is denoted in two ways
as π!G = π∗G. Locally, π is of the form pt/G −→pt/G′ for a map of groups f : G −→G′

and then the pull-back functor π! = π∗ just means that we regard a G′-equivariant object
G(pt) as a G-equivariant object which we denote π∗G(π).

The direct image functors are more interesting. In the case of a map to a point π : S →
T = pt then Fun(pt,V) = V so π!, π∗ : Fun(S,V) → V . These are defined as the two

functors of global sections; π∗F
def
= Γ(S,F) and π!F

def
= γ(S,F).

We require properties of operations π!, π∗

(π∗ ⊔i∈π0C W |i)(y) =
∏

i∈π0C

(π∗W |i)(y) and (π! ⊔i∈π0C W |i)(y) = ⊔i∈π0C (π∗W |i)(y);

and then it suffices to describe these direct image functors in the local situation. Any map
π : S → T is locally of the form pt/G −→pt/G′ for a map of groups f : G −→G′. The most
familiar case is when V is the category V ecC of vector spaces. Then Fun(pt/G, V ecC) is
the category of representations of groups and the functoriality is the usual functoriality
of representations of groups. The general case of arbitrary V just imitates these familiar
constructions.

Functoriality is compatible with compositions, i.e., for S π−→ T σ−→ U we have σ!◦π!
∼=

(σ◦π)! and σ∗◦π∗ ∼= (σ◦π)∗. So, by factoring f through its image f = (G
f ′

։ Im(f)
f ′′

⊆ G′′

it suffices to describe functors π!, π∗ in the cases when f is either a quotient map or an
inclusion.

In the quotient case G′ ∼= G/H then for π : pt/G −→ pt/G′ the functors π!, π∗ :
Fun(pt/G,V) → Fun(pt/G′) are the H-invariants functor and the H-coinvariants func-
tor, i.e.,

(π∗F )(pt) = F (pt)H and (π!F )(pt) = F (pt)H .

In the inclusion case have a subgroup G
f

⊆G′ and the functors π!, π∗ : Fun(pt/G, pt/G′)
are the (co)induction functors,

(π∗F )(pt) = CoindG
′

G [F (pt)] = [Πy∈G′ F (pt)]G

25Provided that these (co)invariants exist in the category V. Otherwise, F (a)G and F (a)G are only
defined as certain limits, i.e., as pro-objects and ind-objects of V.
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and
(π!F )(pt) = IndG

′

G F (pt) = [⊔y∈G′ F (pt)]G.

3.7.9. (Co)sections in a monoidal category. This is based on the “(co)section” construc-
tion in monoidal categories. The unit object 1V in a monoidal category V (co)represents

the covariant functor ΓV(v)
def
= Hom(1V , v) (“sections”) and the contravariant functor

γV(v)
def
= Hom(v, 1V) (“cosections”). When V is a k-linear category, then the values are

in the category m(k) of k-modules and we can denote these functors by

ΓV/k : V → m(k) and γV/k : Vo → m(k).

Lemma. (a) The following diagram is canonically commutative

Fun(C,V)
Γ(C,−)−−−→ V

ΓV/k

y ΓV/k

y

Fun(C,m(k))
Γ(C,−)−−−→ m(k).

(b) The functors ΓV/k comes with the canonical morphisms of bifunctors

ΓV/k(A)⊗kΓV/k(B) −→ΓV/k(A⊗VB)

where A,B ∈ C and X,Y : C −→V.

Proof. (a) When C = pt/G then for W ∈ Fun(C,V),

ΓV/kΓ(C,W ) = HomV [1V ,W (pt)G] and Γ(C,ΓV/kW ) = HomV [1V ,W (pt)]G.

These coincide since the action of G on 1V is trivial.

(b) The map is

HomV(1V , A)⊗kHomV(1V , B) −→ HomV(1V⊗V1V , A⊗VB) = HomV(1V , A⊗VB).

Remark. We can introduce the notion of k-sections of functors C F−→ (V ,⊗) on a stack C,
which is just the composition

Γ(C/k,−) : Fun(C,V) −→ m(k), Γ(C/k,−)
def
=

[
Fun(C,V)

Γ(C,−)−−−→ V ΓV/k−−→ m(k)
]
.

Then the maps
Γ(C, X)⊗VΓ(C, Y ) −→Γ(C, X⊗VY )

give canonical morphisms Γ(C/k, X)⊗kΓ(C/k, Y ) −→ ΓV/k(X⊗VY ). Locally, C = pt/G,
X,Y are G-equivariant objects M,N ∈ V and then the map is XG⊗VY G −→(X⊗VY )G.

Example. When (V ,⊗) = (m(k),⊗k) then 1V = k, the objects M ∈ V are k-modules and
ΓV/k = Homm(k)(k,−) is the identity functor on V , so, sections of M are just elements of
M . On the other hand, γV/k is the dualization operation, i.e., the cosections of M are
the linear functionals on M . In this case, Γ(C/k,−) = Γ(C,−).
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3.7.10. “Localization on stacks”. This is just a terminology. By “localization X of an
object X over a space S”, one means that X is an object spread over S in some sense,
and that X is a “totality of X ” (in some sense).

Here the space S will be a stack and X will then be a functor X : S → T into some
category T . Its “totality” X is then interpreted as an integral

∫
S
X of X or as global

sections of certain type of X over S.

3.8. Appendix C. Free tensor categories as exponentiation. Here we state the
combinatorial principle that the integrals over connected graphs are logarithms of the
corresponding integrals over all graphs. The reason is that the moduli (G,⊔) of a class
of graphs (we need G to be closed under finite disjoint unions) is a free tensor category
cG⊗ generated by the submoduli cG of connected nonempty graphs in G (see ??).

The general statement is now that the construction of a free tensor category (C⊗,⊔) from
a category C has the following property. Any function w : C → C on G extends to a

multiplicative function (C⊗,⊔)
w⊗

−−→ (C, ·), and
∫

C⊗

w⊗ = exp(

∫

C

w).

.

3.8.1. Free tensor categories. We start with three constructions of the same form:

A. Free monoidal category C⊗. Let C⊗ be the category whose objects are
pairs (A, u) with A ∈ OFS and u ∈ CA, while HomC⊗ [(A, u), (B, v)] consists of pairs
(ι, u) of an isomorphism ι : A→ B of ordered sets and a map u→ ι∗v in CA. We define

operation C⊗×C⊗ ⊔−→ C⊗ by (A, u)⊔(B, v)
def
=

(
A + B, (u, v)

)
(and the induced formula

on homomorphisms), where A+B is the ordered disjoint union operation in OFS.

We can think of the construction of C⊗ as “spreading of C over OFS” and OFS = pt⊗.

Notice that C⊗ contains an equivalent subcategory C•
def
= ⊔n≥0 C

n (the spreading of C
over the full subcategory of OFS with objects 〈n〉 = {1, ..., n}).

B. Free tensor category C⊗. Let C⊗ be the category whose

• objects Ob(C⊗) are pairs (A, u) with A ∈ FS and u ∈ CA and
• homomorphisms HomC⊗ [(A, u), (B, v)] are pairs (ι, u) of a bijection ι : A → B

and a map u→ ι∗v in CA.

Again, we define operation C⊗×C⊗ ⊔−→ C⊗ by (A, u)⊔(B, v)
def
=

(
A⊔B, (u, v)

)
. Again,

C⊗ contains an equivalent subcategory ⊔n∈N C
n⋉Sn called the wreath power of C. Here,

Ob(Cn ⋉ Sn) = Ob(C)n and

HomCn⋉Sn [(a1, ..., an), (b1, ..., bn)]
def
= ⊔s∈Sn

N∏

1

HomC(ai, bσi).
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C. Free braided monoidal category E2(C). This is the braid power ⊔n≥0 C
n⋉Bn

of C (where Bn are the braid groups).

Lemma. [Properties of C⊗.] (a) C 7→ (C⊗,⊔) is the left adjoint of the forgetful functor
from tensor categories to categories, i.e., for a category C and any tensor category T
there is a canonical equivalence of categories

Fun⊗[(C⊗,⊔), T ] ∼= Fun(C, T ).

(b) The corresponding functor C → C⊗ is a full embedding. Actually, C⊗ is a graded
tensor category, i.e., a disjoint union C⊗ = ⊔n≥0 C

⊗
n with C⊗

0 = {0C⊗} and C⊗
1 = C.

(c) The above equivalence of categories Fun⊗[(C⊗,⊔), T ] ∼= Fun(C, T ) is the compo-
sition with C → C⊗. It has a canonical quasi-inverse W 7→W⊗ which extends a functor
W : C → T to a tensor functor W : (C⊗,⊔)→ (T ,⊗) by W⊗(⊔i∈I ai) = ⊗i∈I W (ai) for
ai ∈ C, i ∈ I.
(d) (1) The only invertible object in C⊗ is the unit. (2) The isomorphisms classes of C
and C⊗ are related by

π0(C
⊗) ∼= N[π0(C)].

(3) (C⊗,⊔) satisfies a cancellation law: if a⊔x ∼= a⊔y then x ∼= y.

Proof. (a) Let W : C → T be a functor into a tensor category (T ,⊗). For (A, u) ∈
Ob(C⊗) let W⊗(A, u)

def
= ⊗a∈A W (ua). This defines a functor W⊗ : C⊗ −→T , that takes

the morphism (A, u)
(ι,f)−−→ (B, v) to

W⊗(A, u) = ⊗a∈A W (ua)
⊗a∈Afa−−−−→ ⊗a∈A W (vιa) = ⊗b∈B W (vb) = W⊗(B, v).

This is clearly a tensor functor.

(d) (2) implies (3). �

Remarks. (0) Similar claims hold for C⊗ (here π0(C⊗) is the free monoid generated by
the set of isomorphism classes π0(C)) and for E2(C) (here π0[E2(C)] ∼= N[π0(C) again).

(1) [The logarithm of a tensor category.] Let us define primes in (C,⊗) as objects p such
that p ∼= a⊗b implies that one of a, b is invertible. We define the logarithm of (C,⊗) as
the subcategory log(C)⊆ C of primes. It carries a free action of the tensor subcategory
(C,⊗)∗ of invertible objects. Now we can state:

Corollary. A tensor category (C,⊗) is free iff (i) it has no invertible objects and (ii)

log(C,⊗)
⊗ → (C,⊗) is an equivalence.
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Examples. (a) Our prototype of free tensor categories is FS = pt⊗. The next example
are various classes G of graphs, often the moduli G of graphs in this class is a free tensor
category G = cG⊗ where cG is the submoduli of connected nonempty graphs

(b) The free tensor category FS⊗ on the moduli of finite sets is the moduli Par of partitions
(“flower patches”) where a partition of a set B is a family of disjoint subset Ba⊆B indexed
by a’s in some finite set A, which covers A. (Notice that some Ba’s may be empty.)

In particular for the subcategory pt
∼=−→FS1⊆ FS of one element sets, we have a subcate-

gory FS ∼= pt⊗⊆ FS⊗ = Par. Also, for the subcategory FS2⊆ FS of two element sets,
its free tensor category FS2

⊗⊆ FS⊗ = Par is the moduli category Pai of pairings on

finite sets (
def
= partitions of finite sets into pairs).

Proof. Objects of FS⊗ are pairs of a finite set A and a functor α : A → FS. This

gives finite sets L0 = A, L1 = ⊔a∈A α(a)
def
= {(a, b); a ∈ A and b ∈ α(a)} and a map

p : L1 −→L0 by p(a, b) = a. (We think of p : L1 −→L0 as a “forest of depth 1” with L0 the
0-leaves (= roots) L1 the 1-leaves (= leaves)

On the other hand a map p : L1 → L0 gives a partition of L1 into disjoint subsets
p−1a, a ∈ L0.

(c) [G-sets]. For a group G, G-sets, i.e., sets with an action of G, form a free tensor
category (SetG,⊔) = (cSetG)⊗ where cSetG is the submoduli consisting of nonempty sets
with transitive actions.

(d) [k-sets]. For a commutative ring k we can consider the moduli of finite k-sets or of
finite etale k-sets.

(e) “Group algebras” of tensor categories. For a tensor category (C,⊗), the free ten-

sor category (C⊗,⊔) has two operations ⊔ and ⊗ where for Ak ∈ FS one has (A1
c1−→

C)⊗(A2
c2−→ C) = (A1×A2

c1⊗c2−−−→ C).

For example, the moduli of partitions (Pai,⊔) is the monoid algebra (FS,⊔0)⊗ of the
tensor category (FS,⊔0) where ⊔0 denotes the disjoint union in FS. So Pai carries two

operations ⊔0 (“multiplication”) and ⊔1
def
= ⊔ (“addition”).(26)

3.8.2. Free tensor categories and exponentiation. Let C be a stack and k a commutative
topological ring that contains Q.

26Let us view FS⊗ as the moduli of maps L1
p−→ L0, such map indeed gives an L0 family of finite

sets p−1a, a ∈ L0, i.e., an object of FS⊗. Then ⊔ is the disjoint union operation on maps (L′
1

p′

−→
L′

0)⊔1(L
′′
1

p′′

−→ L′′
0) = (L′

1⊔L′′
1

p′⊔p′′

−−−−→ L′
0⊔L′′

0) since the operation ⊔ in FS⊗ glues the L′
0-family of sets

and the L′′
0 -family of sets into one family indexed by L′

0⊔L′′
0 . On the other hand (L′

1
p′

−→ L′
0)⊔0(L

′′
1

p′′

−→
L′′

0) = (L1 −→ L′
0×L′′

0) for

L1 = ⊔(a′,a′′)∈L′
0
×L′′

0
(p′)−1a′⊔0(p

′′)−1a′′ = L′
1×L′′

0 ⊔0 L′′
1×L′

0.
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Lemma. [Combinatorics of free tensor categories.] Any function w : C → k extends

uniquely to (C⊗,⊔)
w⊗

−−→ (m, ·) by w⊗(A, u) =
∏

a∈A w(ua). Then (provided that
∫
C
w

converges unconditionally)

exp(

∫

C

w) =

∫

C⊗

w⊗.

Proof. Since N[π0(C)]
∼=−→π0(C

⊗) by n =
∑

na[a]7→ [⊔a a⊔ na ], we have
∫

C⊗

w⊗ =
∑

n∈N[π0C]

w⊗(⊔a∈π0C a⊔ na ])

|Aut(⊔a∈π0C a⊔ na)| .

To compare with

e
R

C w = exp[
∑

[a]∈π0(C)

w(a)

|Aut(a)| ] =
∏

[a]∈π0(C)

∞∑

na=0

1

na!

( w(a)

|Aut(a)|
)na

=
∑

n∈N[π0C]

∏

[a]∈π0C

w(a)na

|Aut(a)|na na!
;

it remains to check that

AutC⊗ (⊔[a]∈π0C a
⊔ na) ∼=

∏

[a]∈π0C

AutC(a)
na ⋉ Sna .

This is true by definitions. Let a1, ..., an ∈ A be a list that such that for each [a] ∈ π0C
set of indices α[a] = {i; ai = a} has size na (and

∑
[a] na = n). a1⊔· · ·⊔an means

(a1, ..., an) ∈ Cn. Recall that AutC⊗ (a1, ..., an) is a disjoint union of all ΠiAutC(ai, aσ) over
σ ∈ Sn. The σ-contribution to is nonempty iff σ preserves the partition of {1, ..., n} into
α[a], [a] ∈ π0C, i.e., σ ∈ Π[a]∈π0C Sna . For such σ the contribution is

∏
[a]∈π0C

Aut(a)na .

Examples. (a) Localization of exponentiation. When we consider t ∈ k as a function

pt
t−→k then it extends uniquely to t⊗ : (FS,⊔) = pt⊗→ (k, ·) and

∫

FS

t⊗ = et.

A direct proof is obvious, the LHS is
∑

[A]∈π0(FS)
1

|Aut(A)|
tA , i.e.,

∑
n∈N

1
n!
tn.

Lemma. The analogue for the free monoidal category construction is
∫

C⊗

w =
1

1−
∫
C
w
.
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Proof. The free monoid π0(C)•
def
= ⊔∞0 π0(C)n is π0(C

⊗) via [a1]· · ·[an]7→ [a1⊗· · ·⊗an].
So, ∫

C⊗

w⊗ =
∑

n≥0

∑

([a1],...,[an])∈π0(C)n

w⊗(a1⊗· · ·⊗an)
|AutC⊗ (a1⊗· · ·⊗an)|

=
∑

n≥0

∑

([a1],...,[an])∈π0(C)n

n∏

1

w(ai)

|AutC(ai)|
=

∑

n≥0

[ ∑

[a]∈π0(C)

w(a)

|AutC(a)|
]n

=
∑

n≥0

( ∫

C

w
)n

=
1

1−
∫
C
w
.

Remark. The analogue for the free braided monoidal category construction would require
an interpretation of the size |Bn| of the braid groups Bn. This may be a series given by
some increasing filtration by finite subsets, say FpBn could be the elements written as
products of ≤ p generators T±1

i .

3.8.3. Fibered products of tensor categories. The fibered product A×CB of the diagram

of categories A α−→ C β←− B is the category of triples (a, b, ι) where a ∈ A, b ∈ B and
ι : α(a) ∼= β(b) is an isomorphism in C.
Notice that on the level of isomorphism classes of elements, the canonical map

π0[A×CB] −→ π0(A) ×π0(C) π0(B).

forgets the information of the isomorphism ι : α(a) ∼= β(b) in C.

Lemma. (a) The category of tensor categories has fibered products. The fibered product

of a diagram (A,⊗)
α−→ (C,⊗)

β←− (B,⊗), is the fibered product of categories A×CB, with

(a, b;αa
ι−→
∼=
βb)⊗(a′, b′;αa′

ι′−→
∼=
βb′)

def
=

(
a⊗a′, b⊗b′;α(a⊗a′) ι⊗ι′−−→

∼=
β(b⊗b′)

)
..

(b) Invertible objects are given by

[(A,⊗)×(C,⊗)(B,⊗)]∗ ∼= (A,⊗)∗×(C,⊗)∗(B,⊗)∗.

(c) For any diagram of categories A α−→C β←−B, the fiber at ([a], [b]) ∈ π0(A) ×π0(C) π0(B)
can be described in terms of any chosen base point ι : α(a) ∼= β(b) as the set

Aut(a)\\Aut(α(a))// ιAut(b).

More precisely, for an object α(a)
ι−→
∼=

β(b) in A×CB the fiber (A×CB −→ A×B)(a,b) at

(a, b) ∈ A×B (i.e., the moduli of all objects in A×CB of the form α(a)
θ−→
∼=

β(b), is

equivalent to the stack Aut(a)\Aut(α(a))/ ιAut(b).
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3.8.4. Exponential fibered products. For a tensor category (C,⊗), a diagram of categories

A α−→ C β←− B defines a diagram of tensor categories A⊗ α⊗

−→ C β⊗

←− B⊗ and then also a
tensor category A⊗×CB⊗. If A⊗×CB⊗ is a free tensor category, we say that

A ⋄CB def
= log(A⊗×CB⊗)

is the exponential fibered product of A α−→ (C,⊗)
β←−B.

Example. The moduli of graphs G is the exponential fibered product of the diagram

FS2
⊆−→ (FS,⊔)

id←− FS.

3.9. Appendix D. More variations of Feynman expansion. These examples will
not be used.

3.9.1. One particle irreducible graphs (1PI). In the case of a partition function Z, the re-
striction from all graphs γ ∈ G to connected graphs γ ∈ cG does not loose any information
– we get the logarithm log(Z).

One can further reduce the the class of graphs to one particle irreducible graphs (1PI),
meaning the graphs γ which are connected and remain connected when any single edge
is removed. Then the integral for the action S over connected graphs is the same as the
integral over 1PI graphs of a version Seff of S called the effective action.(27)

Seff is a Legendre transform of the original action. The advantage of the effective action
is that the correlators for S can be calculated as sums over trees involving the effective
action Seff . So, one can view Seff as the fundamental unknown of of a given QFT.

3.9.2. Colored propagators. In physics the edges of Feynman graphs often have additional
coloring corresponding to a kind of particle they represent.

This just reflects the grading on the space of fields E = ⊕i∈I Ei. We get g = ⊕ g|Ei , hence
g∗ = ⊕ (g|Ei)∗. This leads decomposition of the propagator P = g∗ into components ⊕ Pi
means that eP factors into

∏
ePi . Then the above computation of 〈φ〉 gets refined since

a term with an edge labeled by P decomposes into I terms with the same edge labeled
by Pi’s. We get a generalization of the standard formula in which the edges are colored
by I and the amplitudes are calculated in the same way.

Lemma. Let GI;N be the moduli of graphs with edges colored by I and with N univalent
vertices colored by 1, .., N , then

〈φ〉 =

∫

γ∈GI;N

wγP•
(I, φ)γ .

27Our central objects are the effective or scaled action S[α] corresponding to the scale α. This is a
different notion then the ‘effective action for the 1PI graphs”.



47

3.9.3. Matrix integrals.

4. Feynman integrals in QFT

4.1. Intro.

4.1.1. Approximations via propagators. The calculations of Feynman integrals in chapter
3 were done in the case when the space of fields E is finite dimensional. One way out of
this restriction is to use the Feynman expansion formula – a sum of Feynman amplitudes
over a moduli of graphs – as a definition of Feynman integrals in general (4.2.1).(28)

The graph definition of integrals applies when graph weights are well defined quantities.
As we have observed in 3.5.1. the amplitudes become meaningful when the inverse metric
g∗ is replaced by any propagator P . In the infinite dimensional setting g∗ is a priori not a
good object(29) and the way to make sense of it is to consider a system of approximations
of g∗ by propagators.

4.1.2. Data (M,E, gM , gE, I) for a perturbative theory (pQFT). A perturbative QFT on
a manifold M features data of the following type

(1) The vector space of fields E is the space of smooth sections E = C∞(M,E) of a
vector bundle E over M .

(2) The interaction part I of the action S = −g
2

+ I is formal series in fields I =∑∞
0 Ik/k! with Ik ∈ Sk(E∗).

(3) The quadratic part g of the action is encodeded as an operator Q on E .
One usually works with a metric gM on the manifoldM and a metric gE = 〈−,−〉

on the the vector bundle E. This gives a measure dm on M and a metric gE on
sections of E

gE(x, y)
def
=

∫

M

dm 〈x(m), y(m)〉.

Now metric g is represented in terms of gE by a positive operator Q

g(x, y) = gE(Qx, y), x, y ∈ E .

In practice Q will be a positive generalized Laplacian operator.

28However, when the interaction I is not infinitesimal this just an “asymptotic” interpretation of
integrals, even in the finite dimensional case.

29To transprt g from E to E∗ we would need g : E → E∗ to be an isomorphism. However, the dual of
the space E = C∞(M,E) of smooth sections is the space C−∞(M,E!) of distributional sections which
has some sections that are supported on points.
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4.1.3. Strategy. The inverse P = Q−1 is called the (ideal) propagator of the theory. It can
be viewed as a distributional section of the outer tensor product E⊗E on M×M .

The problem that arises is that the above abstract Feynman expansion formalism applies
only when the operator P is a smooth section of E⊠E. This singular behavior of P can
be described as the source of serious infinities in QFT. The solution is to:

(1) Approximate P with nicer operators. We will do it by using the heat kernel
operators Kl = e−lQ of Q, which have much better asymptotics then Q or P .

(2) Eliminate infinities by renormalization procedure.

We will see that renormalization is a subtle idea which is not well understood in either
physics or mathematics. We will apply it in the context of constructing the effective
perturbative quantum field theories.

4.1.4. Philosophical remark: Feynman expansion as a (vague) Feynman measure. In Feyn-
man’s correlator integrals

〈φ〉S def
=

∫

E

dx eS(x)φ(x)

the basic problem is the meaning of the Feynman measure dx. The separation of the
action into two terms S = −g

2
+ I leads to a Feynman expansion

〈φ〉− g
2
+I

def
=

∫

E

dx e−
g(x)

2 eI(x)φ(x) =

∫

GN∋γ

wγg∗(I, φ).

One can view this as the construction of the measure

e−
g(x)

2 dx
def
=

∫

G•∋γ

wγg∗

on E (with values in ŜE so that it can be contracted with φ ∈ S(E∗)). This measure cor-
responds to the free action so it describes what we call “free space” or “empty space”.(30)

Also, from our point of view I is the basic quantity (rather than J = eI/ℏ), this should
not be called measure (it is not linear in I) but a composition of a measure with I 7→J .

Remark. Evidence that Feynman measure should involve the free action: (i) in the finite
dimensional case, the normalization of the measure involves the free part of the action;

(ii) Wiener measure on path spaces plays the role of e−
g(x)

2 dx rather than just dx.

4.2. Infinite dimensional spaces of fields.

30This “empty space” is not really empty as we can borrow virtual particles from it. Moreover, the
notion of empty space is not always clear since the splitting S = − g

2 + I is not always canonical.
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4.2.1. Topological vector spaces. The data (E , g, I) for an abstract Feynman expansion
consist of a vector space E , a positive metric g on E and an infinitesimal function I on
E . When E is finite dimensional we proved that the correlator integral 〈φ〉− g

2
+I has an

expansion

〈φ〉P,I def
=

∫

GN∋γ

wγg∗(I, φ)

where propagator P is chosen to be the dual metric g∗ on E∗.
When E is infinite dimensional we would like to use the above expression 〈φ〉g∗,I as the
definition of the correlator 〈φ〉− g

2
+I . The first observation is that the space of fields is a

topological vector space.

The calculus on a vector space E requires a choice of a reasonable topology on E , i.e., a
structure of a topological vector space on E with some good properties. Traditionally one
would require that E be a Hilbert space. However, we will use the class of nuclear Frechet
topological vector spaces which are more useful for geometry and homological algebra.

Example. The space of smooth functions C∞(M) on a manifold M has a nuclear topology
given by seminorms pC,D1,..,DN

– for compact C⊆M and differential operators Di

pC,D1,..,DN
(f)

def
= max1≤i≤N maxx∈C |(Dif)(x)|, f ∈ C∞(M).

Similarly, for the spaces C∞(M,E) of of smooth sections of vector bundles E over M .

Now algebraic operations on vector spaces have to be done in topological vector spaces.
For instance E∗ will mean the continuous linear functionals. By definition, C∞(M,E)∗ is
the space of distributional sections D(M,E∗) of the dual of E.

The tensor product of two topological vector spaces E and F presents a richer story.
The algebraic tensor product E⊗algF has a natural topology but what is useful are two
completions:

(1) The projective completion E⊗projF of E⊗algF has the universal property with

respect to the continuous bilinear maps E×F Φ−→ V .
(2) The injective completion E⊗injF of E⊗algF has the universal property with respect

to the bilinear maps which are separately continuous , i.e., Φ(e,−) and Φ(−, f)
are continuous for e ∈ E , f ∈ F .

We will use the projective completion E⊗projF and we will denote it simply by he projective
completion E⊗F . One of its good properties is that

C∞(M1, E1)⊗C∞(M2, E2) ∼= C∞(M1×M2, E1⊠E2).

The injective completion may appear sometimes for technical reasons.
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4.2.2. Feynman expansions. The space of fields E will be the nuclear space of smooth
sections C∞(M,E) of a vector bundle E over a manifold M . Now propagators P will be
elements of S2E⊆E⊗E = C∞(M×M,E⊠E). Also, we will require that the homogeneous

components Ik of the interaction I lie in Ok(E) def
= (E⊗k)∗]Sk so that they can be contracted

with elements of SE . Since E⊗k)∗ = [C∞(Mk, E⊠k]∗ = D(Mk, (E∗)⊠k]∗, Ok(E) are the
symmetric distributional sections of E∗⊠· · ·⊠E∗ on Mk.

Remark. The key problem of applying the abstract Feynman expansion to QFT is that
the inverse metric g∗ is a distributional section of E⊠E which is not smooth. This makes
amplitudes in Feynman’s expansion infinite.

So, we have started with a “huge” Feynman integral and replaced it by the formal Feyn-
man expansion, however, the terms in this expansion are still infinite. One fights this
problem by regularizing g∗, i.e., approximating g∗ by propagators P ∈ S2E which are

smooth sections. Then 〈φ〉P ;I
def
=

∫
GN

wγP (I, φ) is well defined but its limit as P approaches
g∗ is still infinite. This is resolved by the renormalization procedure which “subtracts from
I the part that produces infinities”. This can be made to make sense, however the notion
of “the part that produces infinities” is not uniquely defined so one needs to control the
choices that occur.

4.3. Approximations of the dual metric. There are two problems:

(1) The dual metric g∗ on E∗ is not a good object in infinite dimension and even
formally it leads divergent weight integrals.

(2) In physics the quadratic part g(x) = (Qx, x) is not quite a metric – it has a kernel,
the classical solutions of the free theory. Since g∗ was defined as the dual metric
of g, it does not quite have a sense.

A way to deal with (2) is to drop the kernel of Q from Feynman integrals, i.e., roughly
to integrate over E/Ker(Q) ∼= Im(Q).(31) This will be systematically pursued below in
the derived version of QFT (the Batalin-Vilkovisky formalism).

Our approach to problem (1) is to approximate g∗ by propagators P ∈ S2E so that the
graph weights are well defined. Then we think of g∗ as the “ideal propagator” while we
effectively work with its truncations P.

We outline two strategies for this approximation (“regularization”). Both are based on
good properties of the generalized Laplace operator Q which represents the metric g on
fields. The first one (“energy scale”) uses the spectral decomposition of fields with respect
to Q. The second (“length scale”) is based on the heat kernel of Q.(32)

31One may still want to remember that Ker(Q) contributes an infinite factor eV ol(Ker(Q) to the Feynman
integral.

32In this approach one uses the formula a−1 =
∫ ∞

0
dl e−la – if g is represented by an operator a

then g∗ is represented by a−1. The right hand side makes sense even if a is not invertible, i.e., if g is
degenerate and this will be our replacement for g∗ :
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While “energy” approach is natural from the point of view of physics, the advantage of the
“length” picture is that it local. In the remainder we will adopt the length view which is
more geometric (mathematics) and allows better understanding of the Locality Principle
(physics) in the effective formalism of QFT.

Below we assume that M is compact. This is actually a prototype of the general strategy
– for noncompact M we will cope by switching attention to approximations that have the
same kind of asymptotics as in the compact case.

4.3.1. Generalized Laplacian operators. We normalize the Laplacian operator ∆ on a Rie-
mannian manifold (M, gM) as

∆
def
= − g∗M

(the dual metric g∗M is a section of S2TM a subsheaf of the sheaf of differential operators).

If gM is flat locally there are commuting orthonormal vector fields ∂i and then ∆ =
−∑

∂2
i .

If M is compact then ∆ ≥ 0 with a unique 0 eigenvector 1M . For instance on a flat
torus M = Rn/Zn, any λ ∈ Zn defines an eigenvector eiλ with ∂ke

iλ = iλke
iλ, hence

∆eiλ = (
∑

λ2
k) e

iλ.

A generalized Laplacian operator on a vector bundle E is a degree 2 differential operator
Q whose symbol σ(Q) ∈ Γ[T ∗M, End(E)] is σ(Q) = idE ⊗g∗M for a metric gM ∈
C∞(S2T ∗M).

4.3.2. The energy view: spectral analysis of Q. From the point of view of spectral anal-
ysis, it is natural to replace our space of fields E = C∞(M,E) with its thicker ver-

sion E def
= L2(M,dm;E). So, E = C∞(M,E) lies in its Hilbert completion L2(M,dm;E)

while the dual Hilbert space L2(M,dm;E∗) lies in the distributional sections D(M,E) =
C∞(M,E)∗ = E∗. The basic fact is that

Lemma. On a compact manifold M any generalized Laplace operator Q has a discrete
spectral decomposition L2(M,dm;E) = ⊕∞0 Cei such that the eigenvalues Qei = λiei can
be organized as 0 ≤ λ1 ≤ λ2 ≤ · · · with finite multiplicities and λi →∞. The eigenvectors
ei are smooth functions (analytic when M is) and can be chosen orthonormal.

For a semisimple operator A on a finite dimensional vector space W , if W = W0⊕W ′ is the decompo-
sition into the zero eigenspace and the rest then

∫ L

ε

dl e−lA = 0W0
⊕(

∫ L

ε

dl e−lA|
W ′ .
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Remarks. (0) On E = L2(M,dm;E) the metric g is represented by the (densely defined)
differential operator Q, so the dual metric g∗ on L2(M,dm;E∗) is represented by the
inverse adjoint operator Q−∗.(33) When we identify L2(M,dm;E) with its dual then the
operator that represents g∗ is just Q−1.

(1) In terms of ei = gE(ei,−), one can write g =
∑

λie
i⊗ei and g∗ =

∑
λi
−1ei⊗ei

(also Q =
∑

λiei⊗ei and Q−1 =
∑

λi
−1ei⊗ei). So, g∗ clearly lies in some completion

of E⊗algE . The problem is that it does not lie in the projective completion E⊗E =
C∞(M2, E⊠E).

4.3.3. Spectral approximations. We will use symbol Λ for the energy scale (by energy we
mean the eigenvalues of the “kinetic” operator Q). The Hilbert space E = L2(M,dm;E)
decomposes into E≤Λ⊕E>Λ where E≤Λ is finite dimensional. We approximate the incar-
nation Q−1 of the dual metric g∗ by its E≤Λ component

P≤Λ
def
=

∑
λi ≤ Λ λi

−1 ei⊗ei.

This kind of truncation is natural in physics since the energy that one can use in any
given experiment is bounded, so so in this sense at any time we are observing the ≤ Λ
truncation of the physical system.

4.3.4. The length view: heat kernel of Q. While Q−1ei = λi
−1ei (with λi

−1 → 0) has a
better asymptotics than Q we know that this is not good enough. However, operators
e−lQ for l > 0 have much better asymptotics and one can recover Q−1 by

∫ ∞

0

dl e−lQ = [e−lQ(−Q)−1]∞l=0 = Q−1.

Theorem. On a compact M , the operators e−lQ for l ≥ 0 have a distributional integral
kernel Kl ∈ D(M×M,E⊠E). Moreover

(1) For l > 0, Kl is a smooth function (analytic when M is).
(2) K0(x, y) = δ(x − y) = δ∆M

is the diagonal delta distribution. (The x-family of
distributions δx(y) on M .)

Remark. Here Q−1 is an integral operator with a distributional kernel Q−1(x, y) =∫∞
0

dl Kl(x, y) ∈ D(M2, E⊠E). This is a way of making sense of g∗ as a distributional
section of E⊠E.

33Since g is nondegenerate we have Q > 0, i.e., λi > 0. Notice that this is not true for the scalar
Laplacian operator −∑

∂2
i , so in the scalar theory one actually uses its “mass regularization” Q = ∆+m

with positive mass m.
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4.3.5. Length approximations. We will use symbols ε, L for the “length” scale. We ap-
proximate the incarnation of g∗ by the integral kernel Q−1(x, y) =

∫∞
0

dl Kl(x, y) ∈
D(M2, E⊠E) with the integral kernel which is a finite integral

P εL(x, y)
def
=

∫ L

ε

dl Kl(x, y).

The properties of the heat kernel (theorem 4.3.4) guarantee that this is a smooth section
of E⊠E, i.e., a propagator P εL ∈ S2E .
The singularities that appear as L → ∞ are called infrared and the one for ε → 0 are
called ultraviolet. Infrared singularities appear for noncompact M and will be easier to
deal with. The energy Λ and length ε are reciprocal (“probing at small lengths requires
large energy”), so the ultraviolet regime corresponds to the large energy singularities in
the energy picture. These are the singularities that will require renormalization.

Mathematically it is quite natural to use the beautiful theory of heat kernels for truncation
of g∗, i.e., Q−1. The physical interpretation is more controversial. It interprets the
“length” l as the (“proper”) time that particle travels between two interactions. However,
the particles that appear in this picture are “nonphysical” (“virtual”) in the sense that
they violet some standard rules. For instance they cam move forward and backward in
time.

So, one may want to think that the unobserved virtual particles are a part of nature or
one may say that they just appear – formally and mysteriously – in Feynman’s rules for
calculating correlators.

4.3.6. Translation between energy and length. Analytically, the energy, i.e., spectral
analysis regularization uses a sharp cutoff, while the length regularization is technically
better since it uses a smooth cutoff. (The energy cutoff PΛ′,Λ of the “ideal propagator”
Q−1 jumps at eigenvalues while P εL is smooth in ε, L.

In terms of Q =
∑

i λi ei⊗ei we have

P εL =

∫ L

ε

dl e−lQ =

∫ L

ε

dl
∑

i

e−lλi ei⊗ei =
∑

i

e−Lλi − e−ελi

λi
ei⊗ei.

So, the high modes λi > Λ are not discarded, they are just suppressed by exponential
factors e−aλi for positive a’s.

Abstractly the two formalisms are equivalent in a sense that one can translate between
the two pictures. One expresses the heat kernel RGF P εL in terms of eigenvectors as
above and then in terms of the energy RGF PΛ′,Λ. (This is the usual Fourier transform
between the position quantities and momentum quantities.)

4.4. Graph weights as integrals and their ultraviolet singularities. We consider
the ultraviolet behavior, i.e., the ε→ 0 regime of the weights wγε,LI. The γ-weight is itself
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an integral over a power MVγ of M given by vertices of γ. Its asymptotics is controlled
by a neighborhood of the diagonals in MVγ , for that reason it does not essentially depend
on M .

We will see that the singularity, i.e., the divergence of the limit limε→0 w
γ
ε,L(I), is caused

the by loops in the graph γ. From the point of view of analysis while the computations
without loops are based on outer product of distributions D(M)⊗n −→D(Mn), the loops
use the product of distributions on a single manifold D(M)⊗2 −→D(M), and this is not
a priori defined in analysis. So, while the outer product of distributions is defined, the
inner product is not, so it has to be renormalized!

The point is that each edge contributes a propagator P εL with integral kernel P εL(u, v) =∫ L

ε
dl Kl(u, v), (u, v ∈ M), and the important part Kε(u, v) converges for ε → 0 to

the delta distribution δu=v on ∆M⊆M2. Then a chain of simple edges between non-
repeating vertices 1, ..., n (an An-graph) contributes the convolution of δ-distributions
δu1=u2· · ·δun−1=un which is a well defined distribution on Mn – the delta distribution on
the diagonal ∆M⊆Mn. Geometrically, we got ∆M out of Mn by imposing n−1 equalities
between n factors.

On the other hand a loop, i.e., a chain of simple edges between vertices 1, ..., n which
form a cycle, i.e., n coincides with 1 (this is an Aaffinen−1 -graph), requires imposing n
equalities between n factors: u1 = · · · = un = u1.

Below we will repeat these arguments with more details.

4.4.1. Graph weights as integrals. For simplicity we will calculate in a scalar theory so
that E = C∞(M), in this case the contractions of tensors reduce to products of functions.
We assume that M is compact, so the measure dm on M (given by the metric gM) is a
linear functional φ ∈ E∗. The interaction is a formal series I =

∑
k

1
k!
Ik, with Ik a local

functional of degree k, i.e., a finite sum of terms of the form

E ∋ x 7→
∫

M

dm
k∏

1

(Dix)(m)

where Di are differential operators. For simplicity we choose a representative case when
Di = 1 and Ik(x) =

∫
M

dm x(m)k.

Compactness also gives for the operator Q the canonical heat kernel K. We will use

propagators P εL =
∫ L

ε
dl e−lQ =

∫ L

ε
dl Kl.

Lemma. (a) For any propagator P the weight wγP (I) viewed as a function of an infinites-
imal field a is

wγP (I) (a) =

∫

MVγ

∏

v∈Vγ

duv
∏

v∈Vγ

a(uv)
tv

∏

e∈Eγ

P (ue′ , ue′′).

Here Vγ, Eγ are vertices and edges of γ and the ends of an edge e are e′, e′′.
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(b) If P = P εL the formula for wγεL
def
= wγP εL

has more structure

wγεL(I) (a) =

∫

MVγ

∏

v∈Vγ

duv

∫

[ε,L]Eγ

∏

e∈Eγ

dle
∏

v∈Vγ

a(uv)
tv

∏

e∈Eγ

Kle(ue′ , ue′′).

Proof. For any propagator P ∈ S2E = C∞(M2)S2 the meaning of the contraction with a
product φ⊗ψ of φ, ψ ∈ E∗ = C−∞(E) is

〈P, φ⊗ψ〉 =

∫

M2

dm1 dm2 φ(m1)P (m1,m2)φ(m2).

�

Below, we will write this in examples.

4.4.2. Star graphs. Let γ have one vertex with k tails and no edges. Then Iγ is just Ik
and Pγ = 1 (no edges) hence there is no ε-dependence. If we put fields a1, ..., am at the
tails then

wγ(I) (a1⊗· · ·⊗ak) = 〈Pγ⊗a1⊗· · ·⊗ak, Iγ〉γ =

∫

M

du a1(u)· · ·ak(u).

4.4.3. Ladder graphs. Let γ be a graph with tails such that the underlying graph has
vertices 1, .., n and edges 12 , ..., n− 1, n (the An-graph). Let ti and ki be the number

of tails and valency at the vertex i. Then Pγ = P⊗ Eγ = P⊗ n−1 and Iγ = ⊗v∈Vγ Ikv =
⊗i = 1n Iki

. The weight wγP (I) = 〈Pγ, Iγ〉γ is a homogeneous polynomial in an infinitesimal
field a of degree

∑
ti,

wγP (I) (a) =

∫

Mn

dm1· · ·dun a(u1)
t1P (u1, u2)· · ·a(un−1)

tn−1P (un−1, un)a(un)
tn

Now, if P = P εL =
∫ L

ε
dl Kl, this is

∫ L

ε

dl1· · ·
∫ L

ε

dln−1

∫

Mn

du1· · ·dun a(u1)
t1Kl1(u1, u2)· · ·a(un−1)

tn−1Kln−1(un−1, un)a(un)
tn .

4.4.4. Loops. Now let the above chain be a loop, i.e., we ask that two vertices coincide:
n = 1 (hence tn = t1). Then there are only n− 1 vertices, hence n− 1 integrals over M ,
but there are still n− 1 edges. So, wγεL(I) (a) is

∫ L

ε

dl1· · ·
∫ L

ε

dln−1

∫

Mn−1

du1· · ·dun−1 a(u1)
t1Kl1(u1, u2)· · ·a(un−1)

tn−1Kln−1(un−1, u1).
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4.4.5. Divergence. We consider the ε → 0 behavior of the above graph integrals. When
ε→ 0 then the integral kernel Kε(x, y) dy approaches the delta distribution δ(x− y) on
∆M⊆M2, i.e., limε→0

∫
M

Kε(u, v) x(v) = x(u).

The ε→ 0 behavior of the ladder graph integral is controlled by the quantity
∫

Mn

du1· · ·dun a(u1)
t1Kε(u1, u2)· · ·a(un−1)

tn−1Kε(un−1, un)a(un)
tn

which approaches
∫

Mn

du1· · ·dun a(u1)
t1δ(u1, u2)· · ·a(un−1)

tn−1δ(un−1, un)a(un)
tn =

∫

M

du a(u)t1+···+tn .

For this reason limε→0 wγεL(I) does exist for ladder graphs.

On the other hand for the loop integral, the corresponding quantity
∫

Mn−1

du1· · ·dun−1 a(u1)
t1Kε(u1, u2)· · ·a(un−1)

tn−1Kε(un−1, u1)

approaches something like
∫

Mn−1

du1· · ·dun a(u1)
t1δ(u1, u2)· · ·a(un−1)

tn−1δ(un−1, u1) =

∫

M

du a(u)t1+···+tnδ(u, u).

However for the delta distribution δ(u, v) = δ(v − 1) one has δ(u, u) = ∞, hence
limε→0 wγεL(I) diverges.

The conclusion is that (as stated above), the divergences are caused by loops and more
loops means worse divergence. In other words,

Corollary. No divergence happens precisely for trees.

4.4.6. Asymptotics of heat kernels. A more quantitative examination of the asymptotics
of weight integrals is again based on precise asymptotics of heat kernels.

Proposition. For ε → 0, the asymptotics of the heat kernel on a manifold (M, gM) is (in
terms of the gM -distance dM),

Kε(u, v) ∼
e−dM (u,y)2/2ε

2πεdim(M)/2
dv.

Remark. Now the nonexistence of the self multiplication of δu=v is seen as the absence of

the ε→ 0 limit of Kε(u, v)
2 ∼ e−dM (u,y)2/ε

2πεdim(M) dv.
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4.5. “Particle” interpretation of Feynman’s graph expansions. In QFT Feyn-
man’s graph expansion formula has interpretation as an integral over the moduli of maps
from metrized graphs into M .

First, locality of action means that each homogeneous piece Ik of the interaction I is an
integral over M . This represents a graph weight wγP (I) as an integral over the space MVγ

of “γ-vertices in M”, i.e., maps of Vγ into M (at each vertex v ∈ Vγ there is one Ik,
hence one integral over M).

On the other hand the formal identity Q−1 =
∫∞
0

dl e−lQ (for the “ideal” propagator
P = Q−1) can be used to presentation wγP (I) as in integral over the space Met(γ) of all
“metrics” l on the graph γ. By a metric l on γ we mean assigning to each edge e ∈ Eγ a
“length” le ≥ 0, and each edge e contributes one integral

∫∞
0

dle.

Finally, the interpretation of the heat kernel Kl = e−lQ as a Wiener integral can be used
to refine the above representation of wγP (I) as in integral over all maps of the geometric
realization |γ| into M . Here, we write the heat kernel

Kl(x, y) =

∫

f :[0,l]→M

1 dWl =

∫

f :[0,l]→M

df e−El(f)

first in terms of the Wiener measure Wl o the space of paths of length l, and then as a
Feynman integral with respect to a Feynman measure df of the energy action of the path
f ,(34)

All together, the space over which one integrates has the following variables: (i) a metric
l on γ (from Q−1 =

∫
dl e−lQ), (ii) a map fe : [0, le] → M which at the end points of

the interval agrees with the map on vertices: fe(0) = f(e′) and fe(le) = f(e′′). So, we are
integrating over the moduli of maps of metrized versions of the geometric realization |γ|
into M .

4.5.1. Heat kernel as a Wiener integral. Let Wl (resp. Wl(x, y)) be the Wiener measure

on the space Pl(M) of continuous paths in M of length l, i.e., maps [0, l]
f−→M (resp.

the space Pl(M ;x, y) of f with f(0) = x and f(l) = y).

Lemma. The heat kernel is the volume of Pl(M) for the Wiener measure

Kl(x, y) =

∫

f∈Pl(M)

1 dWl(x, y) (f)

34Feynman integrals are defined for Quantum Mechanics, i.e., the 1-dimensional case of QFT. So,
the only precise meaning of the Feynman integral (the second integral), is the Wiener integral (the first
integral), i.e., the Feynman measure is

df
def
= eEl(f) dWlf.
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Remark. One can interpret this formula as a Feynman integral where fields are paths and
the action is the energy action E(f) of a path f

Kl(x, y) =

∫

Pl(M)

1 dWl(x, y) =

∫

Pl(x,y)

df e−El(f).

This is in fact the one case where Feynman integrals are well defined – the 1-dimensional
QFT (“Quantum Mechanics”). The precise meaning of the Feynman integral (the second
integral) is just the Wiener integral (the first integral). So, the the Feynman measure is

df
def
= eEl(f) dWl(f).

4.5.2. Metrized graphs in a manifold M . For any propagator P the weight wγP (I) viewed
as a function of a field a is an integral (see lemma 4.4.1.a)

wγP (I) (a) =

∫

MVγ

∏

v∈Vγ

duv
∏

v∈Vγ

a(uv)
tv

∏

e∈Eγ

P (ue′ , ue′′)

over the space MVγ of “vertices of γ in M”, i.e., maps from vertices Vγ to M .

In the heat kernel approach we consider the idealized propagator of the theory P with its
localization on the length scale: P =

∫∞
0

dl e−lQ =
∫∞

0
dl Kl. This introduction of the

length scale gives a richer structure which will extend the appearance of γ-vertices in M
to an appearance of the whole graph γ in M (moreover, γ comes with an internal metric).

We write the weight formula for the truncated version of the propagator: P εL =
∫ L

ε
dl Kl

(lemma 4.4.1.b):

wγεL(I) (a) =

∫

MVγ

∏

v∈Vγ

duv

∫

[ε,L]Eγ

∏

e∈Eγ

dle
∏

v∈Vγ

a(uv)
tv

∏

e∈Eγ

Kle(ue′ , ue′′).

The space [ε, L]Eγ is the moduli Met(γ) of “metrics on the graph γ” where a metric is
a choice of “lengths” of edges. A geometric realization of a metrized graph (γ, l) is a
geometric realization of γ with a metric on the legs such that the leg corresponding to
edge e has length le (it is determined by (γ, l) up to a unique isomorphism).

This is one of the factors. For the other one recall that we are integrating over the space

MVγ of maps Vγ
f−→ M . Moreover, each heat kernel factor Kle (with e ∈ Eγ)) in the

integrand, has a representation as the Wiener integral over maps fe of the interval [0, le]
into M such that it sends the ends e′, e′′ of the edge e to f(e′) and f(e′′).

4.5.3. Particle interpretation. We can view a metrized graph as a worldline of a finite
systems of particles which carry an “internal clock” (called proper time) and are allowed
to collide and break apart. Then the maps into M can be thought of as all possible
evolutions of systems of particles in spacetime M .
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So, the graph expansion of a quantum theory of fields takes form of a quantum theory of
particles in the sense that the Feynman graphs in the expansion get interpreted as world-
lines of systems of particles. Therefore, in its heat kernel incarnation, i.e., the geometric
incarnation, perturbative expansion appears as a passage “from fields to particles”.

The particle interpretation (i.e., calling the maps from metrized graphs to M particles) is
controversial because these particles violate various properties that known particles have.
For instance, if M is the spacetime then the inner time on a particle (“proper time”) is
unrelated to the time in M , so these particles can move backwards and forwards in time.
An example of how the Feynman graph particles violate conservation of momentum is
sketched in 5.10.

On the other hand, I understand that this particle picture is the same as the one that
appears for Feynman expansions in the operator formalism.

Remark. Decomposing interaction terms into sums Ik =
∑

α∈Ak
Ik,α leads to ra finer

picture, i.e., a Feynman expansion with more summands as one refines the class of
graphs (by adding colors Ak at k-valent vertices). So, any interpretation of the graph
expansion should also account for this mechanism.

4.5.4. Singular Quantum Mechanics. The graph expansion of a QFT on M is a kind of
1-dimensional QFT whose fields “metrized graphs in M” in the sense of maps f : (γ, d)→
M , of metrized graphs (γ, d) into M . The quadratic part of the action for the new theory
is the kinetic energy action on maps f : (γ, d)→M ,

E(f) =

∫

(γ,g)

|df |2/2.

The interaction part of the new theory comes from the interaction I of the original QFT.

In the standard terminology QM is a one dimensional QFT but without interactions, i.e.,
only paths appear but not graphs. So, the above formalism is a kind of a “singular QM”
– the worldsheets are now allowed to degenerate from intervals to their singular version –
the graphs.

4.5.5. Relation to String theory. The asymptotic expansion of QFT in terms of metrized
graphs on M is parallel to the idea that the String Theory is an asymptotic expansion
of the M-theory whose fields are maps of Riemann surfaces (worldlines of particles that
are loops rather than points) into the spacetime M . In fact, the graph expansion should
be a little part of the string expansion: when the loop contracts to a point, i.e., a
string particle to a classical particle, then the Riemann surface contracts to a (hopefully
metrized) graph.

4.5.6. Questions. (0) Costello’s formalism uses only the stable Feynman graphs, i.e., the
ones that correspond to stable surfaces that appear in the Gromov-Witten theory.
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(1) The physical meaning of this transition seems to be that all mechanisms in QFT are
mediated by particles?

(2) How is the appearance of singular intervals (graphs) parallel to the need in String
Theory to use the compactification of surfaces by “stable surfaces”?
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Part 2. Quantization by renormalization

Appendices B,C,D are not needed in the remainder.

4.6. Intro.

4.6.1. The notion of effective quantum theories: physics. The strategy called effective or
scaled QFT is that instead of considering one setting which involves all possible scales one
has a family of “pictures” – for each scale α the α-picture considers only the phenomena
of scale ≤ α.

This approach views the description of a quantum system by a single quantum action
S ∈ Actq as an approximation which produces infinities in QFT. Rather,

(Wilson) Physics depends on the scale and at each scale α it is described by an action
Sα.

(35)

We call Sα = S[α] the “effective” action on scale Λ.

So, the point of view is that in practice one always deals with objects of a limited “size”
and then our attempt to describe physics at all scales by a single formula is an idealization
which introduces infinities. The infinities only arise when we think of the classical action
S as adequate for all energy scales including the infinite one.

Now, the problem of quantization is to deduce S[Λ] from S (as much as one can deduce
the quantum system from knowing the classical one).

4.6.2. Change of scale as “coarse graining”. The obvious reason that we require different
theories is the “coarse graining” or “defocusing” of degrees of freedom. In studying
physics we are generally not interested in knowing all about the world but only about
the dominant effects at the scale that we concentrate on. The objects on a smaller scale
are not relevant themselves but only through their aggregate effect on the scale that we
consider.

This change of scale from α to β through “coarse graining”, i.e., averaging the degrees of
freedom that live on intermediate scales, is called the Renormalization Group Flow. We

35How physics depends on the scale is clear when we consider drastically different scales – these require
drastically different theories:

(1) Condensed matter
(2) Nuclear
(3) Particle physics.
(4) ? Strings or M-theory
(5) ?

Here (1) lives at standard energies, say the room temperature. To get from (1) to (2) we need to increase
energy by a 106 factor. From (2) to (3) by a 103 factor. We only understand well the physics of “low”
energies.
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can view it as flow W in the space of all possible actions, then the flow Wαβ moves the
description Sβ of the system at scale β to Sα. The equation

WαβSβ = Sα

is called the Renormalization Group Equation (RGE).

4.6.3. Effective QFT as regularization by “scaling”. Technically, the idea of effective QFT
is to regularize a given theory T by “scaling” the theory T according to some choice of
a scale S. This vague notion of scaling means that for each value α of S the truncated
theory T≤α considers objects of scale ≤ α and their physics is described by an action Sα.

4.6.4. Renormalization Group Flow. The compatibility between different scales α, β is
then described by the scaling flow operators (the Renormalization Group Flow operators)
Wαβ on the space of actions – one requires that

Sβ = WαβSα.

The idea is that for β < α one obtains the β-action from the α-action by “integrating
out” the objects which are on the scale between β and α. (For energy scale formalism
these objects are fields with α ≤energy≤ β and for the length scale the worldlines with
α ≤length≤ β.)

Actually, the quadratic part of the action is independent of the scale, so we will consider
only the interactions I instead of actions S = −g

2
+ I. Therefore, the Renormalization

Group Equation (RGE) that we will deal will really be of the form

Iβ = WαβIα.

4.6.5. Definition of effective QFT, i.e., properties of actions S[−]. These actions should
have the scaled versions of standard properties of actions in physics, for instance the
“scaled locality” property. The locality principle in physics roughly requires that physics
respects the geometry of space: there are no “spooky” actions at a distance. In the scaled
picture this may be broken and one can only require asymptotic locality – some notion of
approximate locality at the scale α which becomes the standard locality as α→∞.(36)

4.6.6. Quantization in the framework of effective theories. By “quantization” we will
mean here the passage from a classical action S to an effective QFT action S[−], i.e., a
family of actions S[α] that describe the quantum system at the scale α.

The effective action S[−] turns out to contain crucial information. This is exemplified in
the Costello-Gwilliam construction of the form effective actions.

36As usual, one pays for regularization by replacing simple properties of original objects with more
complicated approximate versions.
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4.6.7. Non-uniqueness of quantization. In principle, the classical information represented
by the action S may not suffice to describe the quantum system. This is reflected in the
multitude of choices of S[−] that our procedure creates – the deformation quantization is
performed inductively in powers of ℏ and at each step we get some unknown parameters.

The theoretical part of the additional information that is needed to describe the quantum
system usually comes in the form of some symmetry requirement that the quantum system
S[−]. In good cases this cuts down the number of unknown parameters to a finite small
number, and these are then found through experiments.

In fact, canonical quantization procedures exist in physics (say the “minimal subtraction
scheme”), but one needs additional reasoning to argue that in a given situation such
procedure leads to the description of the physical system. The mathematical formalism
we present is even less explicit since our quantization procedure appears to rely on the
axiom of choice (a choice of a complement to a vector subspace).

The upshot is that for mathematicians the quantization procedure is just an abstract
theorem on existence and classification of quantum systems with the given classical limit
S.

4.6.8. Quantization procedure as renormalization of Feynman amplitudes of graphs. The
point is that the classical action S will be viewed as the closest known approximation of
the (possibly idealized) action S[∞] that describes physics in the presence of objects of
arbitrary scale. Then the effective actions should be something like

S[α] = W∞,αS[∞] = W∞,αS
def
= lim

β→∞
Wβ,αS.

This limit does not exist and therefore has to be modified, we say renormalized.

The operators WεL are intuitively certain Feynman integral and we actually define them
as certain sums of Feynman amplitudes of graphs. These amplitudes are are themselves
integrals which are defined for finite β but become undefined in the limit β → ∞. The
renormalization procedure systematically cancels the infinities that appear in this limit.

Remark. We will work with the “length” scale, in this setting the notion of sizes gets
inverted so the role of β →∞ will be played by ε→ 0.

4.6.9. Quantization variable ℏ. As usual, this quantization process also introduces an
extra variable, the “quantization” variable ℏ. It appears here in quantum actions S[α]
because the renormalization flow operators W εL are Feynman integrals which contain ℏ

and this forces ℏ to appear in quantum actions S[α].

Question. (Franz) Can one explain the appearance of ℏ from the point of view of the
renormalization procedure? (Would the procedure formally work without ℏ?)



64

4.6.10. Energy scale and length scale. In 4.3 we have outlined two strategies for approxi-
mating divergent Feynman weight integrals with well defined weights wγP (I) of propagators
P . In the energy scale approach the propagator P≤Λ is obtained by truncation of Q−1 to
the subspace E≤Λ of fields of energy ≤ Λ. In the length scale picture the propagator P εL

is and integral
∫ L

ε
dl Kl of the heat kernel of Q (a truncation of Q−1 =

∫∞
0

dl Kl).

We will first derive the formula for the Renormalization Group Flow operators in the more
intuitive energy picture. Then we will define these operators in the length formalism by
replacing P≤Λ with P εL.

5. Change of scale (“Renormalization group Flow”)

5.1. Relevant classes of functionals on fields. The basic manifestation of the Locality
Principle in physics is that the action functionals are required to be local in the sense
below.

5.1.1. Functional analysis. As explained in 4.2.1 we will work in the tensor category
(Nuc,⊗) of complete nuclear topological vector spaces with the completed projective tensor
product ⊗. We denote the dual of a vector space by V ∗ and the space of continuous liner
functionals by V v.

5.1.2. Observables, i.e., functions on the space of fields. We work on the formal neigh-
borhood of zero in the space E of functionals. So, the class of functions we use are the
formal series

O(E) def
=

∏

n≥0

On(E) where On(E) def
= [(E⊗)v]Sn .

So, our functionals have Taylor series expansion into homogeneous components which we
denote I =

∑∞
0 Ik.

5.1.3. Local functionals. A Lagrangian on the space of fields E is a map L : E → DensM .

Any Lagrangian L gives a functional on the space of fields S(x)
def
=

∫
M

L(x,m), x ∈ E .
A Lagrangian L is said to be local if it is a finite sum of products

L(x,m) =
∑

r

(
∏

i

Di,rx)(m)

for differential operators Di,r on M (with values in densities).(37) In other words, L factors
to a function on the jet bundle JE →M of fields.

A functional F ∈ S(E∗) on the space of fields is said to be local if (i) it comes from a
Lagrangian and (ii) this Lagrangian is local. So, locality for F means that it “localizes

37Operators D : ⊗ C−∞(M,Vi) −→> C−∞(M,V ) of the form D(x1⊗· · ·xn) =
∑

r (
∏n

i=1 Di,rxi) for
differential operators Di,r on M are called polydifferential operators.
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on M” and that the contribution from a point m ∈ M depends only on the jet Jmx of x
at m.

A power series functional I ∈ O(E) = Ŝ(E) or I ∈ Ŝ(E)[[ℏ]] is said to be local if its
homogeneous components are. Local functionals form the subspace Ol(E)⊆ O(E). We

denote Onl (E)
def
= On(E) ∩ Ol(E).

Remark. Local functionals Ol(E)⊆O(E) are not a subalgebra. For instance
for E = C∞(M) the square of the local functional F (x) =

∫
M

x(m) dm is
F 2(x) =

∫
(u,v)∈M2 x(u)y(v) du dv.

5.1.4. The action and interaction functionals. (1) Classical. The space Actc of classical
action functionals is the subspace of the space Ol(E) consisting of local functionals S
which are at least quadratic. We will view it as a sum of subspaces

Actc = O2
l (E)⊕Ic

def
= Ol(E)

of local quadratic functionals O2
l (E)

def
= O2(E) ∩ Ol(E) and the space of classical inter-

action functionals Ic⊆ Ol(E) which consists of local functionals which are at least cubic.

So, any action S ∈ Actc decomposes into the quadratic part S2 which we write as S = −g
2

and the interaction part I
def
=

∑
i>2 Si ∈ Ic.

(B) Quantum. When passing from classical to quantum actions the quadratic term does
not change but interaction acquire formal series in the Planck constant ℏ. Therefore,
the space of perturbative quantum actions is a sum of quadratic local functionals and
quantum interactions

Actq def
= O2

l (E)⊕Iq ⊆ O(E)[[ℏ]]

where perturbative quantum interactions form the subspace of

Iq ⊆ Ol(E)[[ℏ]]

given by the requirement that the constant term I|ℏ=0 in the ℏ-expansion is a classical
interaction, i.e., it is at least cubic.

(C) Effective Quantum. In the framework of effective QFT one is not working with
a single quantum action S = −g

2
+ I but rather with a family of compatible “effective”

actions S[α] = −g
2

+ I[α], 0 < α <∞. It turns out that none of these actions has to be
local but the family S[α], 0 < α <∞, will be required to have certain locality property.

So, I[α] is only required to be in the larger subspace Ĩq ⊆ O(E)[[ℏ]] given by the condition
that I[α]|ℏ=0 is at least cubic.

5.2. Scaling flow (“Renormalization Group Flow” or RGF) in energy picture.
Here we derive a formula for the renormalization group operators in the setting of the
energy scale. The energy scale provides the framework of spectral theory of the generalized
Laplace Q on the space of fields. This allows us to work with well defined Feynman
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integrals. At the end we restate the formula in terms of graph expansions, this gives us
an abstract notion of RGF operators associated to a choice of a scale.

5.2.1. The physics justification for scaling the notion of QFT. Our understanding of
physics clearly depends on the scale, for instance the physics on drastically different
scales is described by different theories, Moreover, even within one physical theory the
scale may be present because in any given experiment we have a bound Λ on energy that
can be used. So, it is possible that within a single theory the physics depends on the scale
Λ and that it requires slightly different descriptions for different Λ.

5.2.2. Effective theory via spectral truncation of the operator Q. In energy picture the
spectral analysis of Q gives decompositions E = E≤Λ⊕E>Λ into spaces of fields with
specified energies. The projection E։E≤Λ gives the embedding of “observables on scale
≤ Λ” (the measurements, i.e., experiments that can be performed with ≤ Λ energy)

Ob≤Λ
def
= O(E≤Λ)

into the space Ob
def
= O(E) of all observables.

We will now assume that the physics at scale ≤ Λ is described by an action which we
denote S[Λ] ∈ Ob≤Λ.(38)

5.2.3. Correlators on a given scale. Let φ ∈ Ob≤Λ be an observable on a scale Λ, i.e., φ
only sees fields of energy ≤ Λ, its expectation 〈φ〉 is computed in terms of the action SΛ

on the scale Λ

〈φ〉 =

∫

x∈E≤Λ

dx eSΛ(x)/ℏ φ(x) .

Notice that here our Feynman integral is well defined since it is on a finite dimensional
space E≤Λ (there are finitely many eigenvalues λ ≤ Λ !). This is the promised feature of
the effective theory that everything is well defined (“no infinities”).

5.2.4. Renormalization Group Equation (RGE). For two scales Λ′ ≤ Λ any Λ′-observable
φ is also a Λ-observable (formally, the projection E≤Λ։E≤Λ′ along E(Λ′,Λ] gives the inclusion
Ob≤Λ′ ⊆ Ob≤Λ). This provides two ways to calculate 〈φ〉 by using either SΛ′ or SΛ. The
equality of two formulas of φ〉 is easily seen to be equivalent to the following relation
between actions SΛ′ and SΛ. We call it the Renormalization Group Equation.

38This is the marriage of the “action principle” (physics is described by an action) with the “effective
theory principle” (physics can be observed only on a bounded scale at any given time).
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Lemma. For Λ′ ≤ Λ and any field x′ ∈ Ob≤Λ′

SΛ′(x′) = ℏ log[

∫

y∈E(Λ′,Λ]

dy eSΛ(x′+y)/ℏ ].

Proof. For φ ∈ Ob≤Λ′ ,
∫

x′∈E≤Λ′

dx′ eSΛ′ (x′)/ℏ φ(x′) = 〈φ(x)〉 =

∫

x∈E≤Λ

dx eSΛ(x)/ℏ φ(x)

can be rewritten in terms of x = x′ + y as

=

∫

x′∈E≤Λ′

dx′
∫

y∈E(Λ′,Λ]

dy eSΛ(x′+y)/ℏ φ(x′ + y).

Here, φ(x′ + y) = φ(x′) since φ ∈ Ob≤Λ′ , when viewed as a function on Ob≤Λ is invariant
under translations by Ob(Λ′,Λ]. So, the integral is

=

∫

x∈E≤Λ′

dx′ φ(x′)

∫

y∈E(Λ′,Λ]

dy eSΛ(x′+y)/ℏ .

This gives

eSΛ′ (x′/ℏ) =

∫

y∈E(Λ′,Λ]

dy eSΛ(x′+y)/ℏ .

Remark. The RGE says that for Λ > λ′ SΛ′ is obtained from SΛ by “allowing the field x′

on the scale ≤ Λ′ to fluctuate on the scale (Λ′,Λ]”, i.e., by averaging over fluctuations on
scale (Λ′,Λ]. So, one is just integrating out the objects on the intermediate scale (Λ′,Λ].
The same words describe the transition on the level of interactions rather then actions:

5.2.5. RGE for interactions. The quadratic part −g
2

of the action is expected to be the
same at all scales (in particular the same as in the classical action!). Therefore,

SΛ = −g
2

+ IΛ

and we will only be interested in the evolution of the interaction party IΛ ∈ Iq with the
scale. The corresponding form of RGE is:

Corollary. For Λ′ ≤ Λ and any field x′ ∈ Ob≤Λ′

IΛ′(x′) = ℏ log[

∫

y∈E(Λ′,Λ]

dy e−
1
ℏ
[− g(x′)

2
+IΛ(x′+y)] ].

Proof. We know that

e−
1
ℏ
[IΛ′ (x′)] = e

g(x′)
2

+SΛ′ (x′/ℏ) =

∫

y∈E(Λ′,Λ]

dy e
g(x′)

2
+SΛ(x′+y)/ℏ .
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Since

g(x′)

2
+ SΛ(x′ + y) =

g(x′)

2
− g(x′ + y)

2
+ IΛ(x′ + y) = −g(x′, y)− g(y)

2
+ I(x′ + y),

we are done by orthogonality of x′ ∈ E≤Λ′ and y ∈ E(Λ′,Λ].

5.2.6. Renormalization group flow W . The RGE says that the transition between scales
is given by the operator WΛ′,Λ defined on the space Iq of quantum interactions by

(WΛ′,ΛI)(x
′)

def
= ℏ log

[ ∫

y∈E(Λ′,Λ]

dy e
1
ℏ
[− g(x′)

2
+I(x′+y)]

]
.

These are the Renormalization Group Flow operators on Iq (in the energy scale formal-
ism).

The RGF operators are the basic objects in the effective QFT formalism. The procedure
of quantization of classical theories used below is just the extension of the construction
WΛ′,Λ to L =∞, i.e., to the setting where fields of all scales are allowed.

Remarks. (0) One should keep in mind that by our definitions IΛ is a formal series in
fields so it is only defined on infinitesimal fields. So, the formulas above are meaningful
(and correct) only for infinitesimal elements x′ of E≤Λ′ , but this still gives a well defined
operator on interaction functions which are defined only infinitesimally on E .
(1) On the other hand, once we remember that we are working on formal neighborhoods
of zero, these RGF operators are well defined since we are integrating over a finite dimen-
sional vector space E(Λ′,Λ].

5.2.7. Renormalization graphs. Our combinatorial setting is the class of graphs T G•, the
graded graphs with tails. These are pairs γ = (Γ, g) of a graph with tails, i.e., a diagram
of finite sets

Γ = (PΓ
σ←−PΓ

π−→ VΓ)

where σ is an involution (see 3.6.1), and a “grading” g : Vγ
def
= VΓ −→N which is called

genus. The genus of the graph γ is the integer

gγ
def
= b1(γ) +

∑

v∈Vγ

gv.

The subclassRG of “renormalization graphs” is the class cT G• of connected graded graphs
with tails.

We say that γ is stable if

• vertices of genus 0 are at lest trivalent and
• if vertices of genus 1 are at least one valent.

The subclassRG of “renormalization graphs” is the class csT G• of connected stable graded
graphs with tails.
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5.2.8. Graph expansion of RGF operators. Since the Feynman integral in the definition of
WΛ′,ΛI is finite dimensional it has a valid graph expansion. To write it down, notice that
the integral uses the restriction g|E(Λ′,Λ]

of the metric g on E to a metric on E(Λ′,Λ]. This

restriction is represented by the restriction of Q|E(Λ′,Λ]
of Q. The propagator for g|E(Λ′,Λ]

is

therefore (Q|E(Λ′,Λ]
)−1 = Q−1|E(Λ′,Λ]

. We denote by P(Λ′,Λ] the operator on E which is the

extension of Q−1|E(Λ′,Λ]
by 0 on E⊥(Λ′,Λ], i.e., the (Λ′,Λ]-spectral truncation of Q−1.

The expansion is over the moduli RG of renormalization graphs, introduced above.

Lemma. The RGF operators for energy scale have an exact(39) Feynman expansion

(WΛ′,ΛI)(x
′) =

∫

γ∈RG

ℏgγ wγP(Λ′,Λ]
(I).

Proof. In the expansion of
∫

y∈E(Λ′,Λ]

dy e
1
ℏ
[− g(x′)

2
+I(x′+y)]

the graphs should be graded as in 3.5.3 because this Feynman integral contains the Planck
constant ℏ. However, the formula in 3.5.3

∫

γ∈G•
ℏ
−χγ+

P

v∈Vγ
gv wγQ−1|E(Λ′,Λ]

(I)

must be modified in one aspect – the infinitesimal additive shift y 7→ y+x′ in the integral
replaces the class G of graphs with the class T G of graphs with tails. So, the relevant
class T G• is that of graded graphs with tails. Finally, to calculate the logarithm we just
restrict to the connected graphs cT G•. So,

log
[ ∫

y∈E(Λ′,Λ]

dy e
1
ℏ
[− g(x′)

2
+I(x′+y)]

]
=

∫

γ∈cT G•
ℏ
−χγ+

P

v∈Vγ
gv wγQ−1|E(Λ′,Λ]

(I).

Once we multiply this with ℏ, the power of ℏ that appears with the graph γ equals gγ
since the power is

∑
v∈Vγ

gv plus 1− χγ = 1− (b0(γ)− b1(γ)) = b1(γ) (since the graph is

connected).

Finally, for I ∈ Ob≤Λ, the contraction wγQ−1|E(Λ′,Λ]

(I) does not change if we replace

Q−1|E(Λ′,Λ]
by its extension PE(Λ′,Λ]

to E by zero on E⊥(Λ′,Λ].

! Should explain the stability condition.

39Here, “exact” is used to emphasize that both sides are well defined and we have an equality of well
defined quantities.
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5.3. Scaling flow (“Renormalization Group Flow”) in length picture. For the
length scale we will define the RGF operators by following the abstract notion of RGF
that we found by considering the energy scale. When we considered the energy scale then
the scale appeared on the level of fields and we started by truncating the fields according
to the scale. However, the end result was that the essential ingredient is the notion of
truncating the ideal propagator Q−1 to actual propagators and this can also be done for
the length scale (5.3.1).

The notion of the length scale will here enter in a formal way and only later it will be given
a geometric interpretation (which is geometrically appealing but not manifestly physical).
The length will be defined as the parameter l in the formula

Q−1 =

∫ ∞

0

dl e−lQ.

The formula obviously provides truncations of Q−1 with respect to the parameter l,

P εL
def
=

∫ L

ε

dl e−lQ.

The operators e−lQ, l ≥ 0, have integral kernels Kl and the family K is known as the heat
kernel for the generalized Laplace operator Q. This provides a tool for understanding the
singularity of Q−1 in terms of the asymptotics of heat kernels.

According to the scheme 5.3.1, these l-truncations of Q−1 provide a notion of RGF oper-
ators for the length scale l by the graph expansion

(Wε,LI)(x
′)

def
=

∫

γ∈RG

ℏgγ wγεL(I)

for wγεL
def
= wγP εL

.

The operators obtained by this formal definition actually have a geometric interpretation
as a special case of the “particle” interpretation of Feynman integrals in the heat kernel
formalism from 4.5.

5.3.1. The notion of RGF operators for scale S. By a scale S for a free theory (M,E,Q)
we will mean any truncation of the ideal propagator Q−1 to a family of propagators
Pαβ ∈ S2E for (α, β) ∈ R>02

such that

• (i) in some sense

lim
α→0, β→∞

Pαβ = Q−1.

• Pαβ + Pβγ = Pαγ .
• All Pαβ commute,

We think of Pαβ as the truncation of Q−1 to the S-scales (α, β] intermediate between α
and β.
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To a scale S we associate the S-RGF W S consisting of the operators on Iq

(W S
α,βI)(x

′)
def
=

∫

γ∈RG

ℏgγ wγ
PS

α,β
(I) = ℏ log[e

1
2
PS

α,β(e?)].

For β > α we think of this as integrating out the degrees of freedom that on the S-scale
lie between α and β.

We define the scale S RGE for a family of quantum interactions Iα = I[α] ∈ Iq, 0 < α <
∞, as

Iβ = WαβIα, α, β > 0.

Remark. In the present terminology the energy scale consists of spectral truncations PΛ′,Λ

of Q−1 relative to the Q-spectral subspaces E(Λ′,Λ]. In this case the Q-spectral decompo-
sition of fields provides extra data – a notion of the theory IΛ truncated to the scale
≤ Λ. Then the requirement of consistency for these theories (the correlators for ≤ Λ′

observables can be calculated in any truncation ≤ Λ with Λ ≥ Λ′) forces the transition
between between truncated theories IΛ′ , IΛ to be given by operators WΛ′Λ that are given
by the above formula (lemma 5.2.8).

The abstract form of the formula in lemma 5.2.8) is the source of the above definition of
a general notion of a scale and of the associated RGF and RGE.

5.3.2. We define the length-RGE for a family of quantum interactions IL = I[L] ∈ Iq, 0 <
L <∞, as

SL = W εL Sε.

5.4. The scaling connection. Peter Dalakov and Aaron Gerding suggested that one
should also view the length-RGF as a connection. Recall that while the energy RGF
operators WΛ′,Λ are not continuous in the scale (they jump at eigenvalues of Q), the
length RGF operators W εL are smooth in the scale.

This connection is the simplest in the space of exponentials J = eI/ℏ where it becomes
linear. However, I is a more fundamental quantity than J – for one thing we understand
the locality property in terms of I but not in terms of J .

5.4.1. The “scaling” connection. W εL is the parallel transport on the trivial vector bundle

V = (0,∞)×Ĩq over (0,∞). The corresponding connection is∇ = d−WL where operators

WL on Ĩq are

WL
def
= (

d

dL
W εL)|ε=L.

We also consider this connection in terms of the variable J = eI/ℏ, then the notation is
WεL and ∇ = d−WL.
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Lemma. (a) The connection ∇ is given in terms of variables I and J by operators

WL(I) =
1

eI/ℏ
1

2
ℏKLe

I/ℏ and WLJ =
1

2
ℏKL J.

(b) Let RG1⊆T G be the submoduli of renormalization graphs with one edge, then

WL =

∫

γ∈RG1

wγKL
(I).

Proof. (a) Since W εL = ℏ log[e
1
2
P εL eI/ℏ],

d

dL
W εL|ε=0 = ℏ(e

1
2
P εL eI/ℏ)−1 1

2
KLe

I/ℏ|ε=L =
1

eI/ℏ
1

2
ℏKLe

I/ℏ.

In terms of J = eI/ℏ, the parallel transport and the connection are simply

WεLJ = e
1
2

ℏP εL J and WLJ =
1

2
ℏKL J.

(b) Recall that wγP (I) = 〈Pγ, Iγ〉γ is a γ-contraction of two tensors which have been
localized (placed) on γ. We have Pγ = PEγ with one propagator P placed on each edge
e ∈ Eγ and Iγ = ⊗v∈V|ga Ikv where at each vertex v ∈ Vγ of valency kv we place Ikv . Then

one contracts along the prongs (half-edges) of γ. This produces wγP (I) ∈ S(E∗) of the
degree tγ, the number of tails of γ.

Now wγεL(I) is a function of L through its propagator P = P εL and d
dL
P εL = KL. There-

fore, applying d
dL

to wγP εL
(I) we get a sum over edges e where the e-summand is obtained

by differentiating P εL placed at the edge e, i.e., at the edge e we replace P εL by KL.

When we plug in ε = L at all edges e′ 6= e, P εL becomes PL,L = 0. Therefore, if γ has more
then one edge all summands become zero, and if γ has a single edge then d

dL
wγεL = wγKL

(I).

Corollary. The partition of RG1 into graphs RG1loop where the single edge is a loop and
RG1edge where the edge is not a loop, decomposes the operator WL as W edge

L +W loop
L and

W loop
L = ℏKL

while

Here,

ℏiSk(E∗) W 1
L−−→ ℏi+1Sk−2(E∗) and ℏiSk

′

(E∗)⊗ℏi
′

Sk
′′

(E∗) W 0
L−−→ ℏi

′+i′′Sk
′+k′′−2(E∗).

Proof. Any graph γ in RG11 has a single vertex c, we place Ikc at c and contract Iγ = Ikc

with KL along e. The effect of the operator

W 1
L(I) =

∫

γ∈RG1

ℏgγwγKL
(I)

is just the differentiation of I by KL.
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Here, gγ = b1(γ) + gc = gc + 1.

If e ∈ RG10 then e connects two different vertices a, b and we place Ika at a and Ikb
at b

and contract Iγ = Ika⊗Ikb
with KL along e. Here, gγ = ga + gb.

“Poisson” structure

[{I ′, I ′′}L]ik
def
=

∑
i′ + i′′ = i, k′ + k′′ = k 〈Ii′k′Il′′k′′ , KL〉

where the summand means all KL-contractions of Ii′k′⊗Il′′k′′ along pairs of prongs, one in
each flower. ................

BV-Laplacian?

Remark. Connection ∇ is quadratic in terms of the variable I which is ‘local” in M . The
singularity at ε = 0 appears only in the linear part W 1

L. In terms of J the connection is
linear, however J is only “exponentially local” in M¿

Question. Is this the root of the ‘exponential locality” of factorization algebras?

5.4.2. The universal solution. This is the operator of parallel transport to infinity

WL
def
= WL∞ = e−PL∞ .

Question. Does e−PL∞ have a kernel? Is e−PL∞ its “kernel”?

Proof.

d

dL
e−PL∞ = e−PL∞

d

dL
(−PL∞) = KLe

−PL∞
d

dL
.

5.5. The definition of Effective Quantum Field Theories.

5.5.1. The free data (M,E, gE, Q). They consist of a vector bundle (g on a manifold M ,
which carries a generalized Laplace operator Q and a metric gE.

The symbol of Q gives a metric gM on M (σ(Q) = g∗M). This metric gives a measure dm
on M . Then gE and dm produce a metric g = gE on the space E = C∞(M,E) of sections
of E.

5.5.2. Wilson’s definition of QFT in terms of effective actions for the energy scale. Wilson
defined an effective QFT for a free theory (E,Q, gE), as a family of “effective actions”
S[Λ] = SΛ indexed by energy scales 0 < Λ <∞ and satisfying the following principles:



74

(1) Each SΛ is a power series in ℏ and in the fields: SΛ ∈ Ŝ(E∗)[[ℏ]].
The quadratic part of S[Λ] does not depend on the scale and it comes from the

generalized Laplace operator:

S[λ] = −g
2

+ IΛ,

where the interaction part IΛ ∈ Ŝ(E∗)[[ℏ]] is at least cubic in fields.
(2) S[Λ] is a function on E≤Λ⊆E the fields of energy ≤ Λ, i.e., SΛ factors through

the projection E։E≤Λ.
(3) [Renormalization Group Equation.] For Λ′ < Λ, S[Λ′] is determined from S[Λ] by

the RGE:

I ′Λ = WΛ′,ΛIΛ.

(4) [Locality.] The family SΛ satisfies certain Λ-notion of locality axiom formulated
below in 5.5.6.

5.5.3. Principle of locality. This is a requirement of compatibility of physics with the
space M on which we observe it. The intuitive version says that

Interactions between fundamental particles only happen at points.

In other words, particles only interact when they are at the same point of space. One can
state it as

NO spooky action at a distance.

So, if particles interact at a distance this is through the mediation of other particles
between them.

In terms of the action, locality principle appears as the requirement that the action is a
local functional on fields. This means that it is the integral of local contributions

S(x) =

∫

m∈M

L(x,m)

and the local contribution L(x,m) (called Lagrangian) is local in the sense that it is a
function on the jet bundle JE of fields, i.e., it is a finite sum of products (

∏
i Dix)(m)

for differential operators Di. yyy

5.5.4. Asymptotic locality. The effective action formalism is not directly compatible with
locality – the locality principle holds only when we include all scales. At any given range of
scales locality only holds approximately and this approximation gets better as we extend
the range. A precise formulation is that locality holds asymptotically (the definition of
asymptotic expansions is in 5.7 below).
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We say that a solution I[−] of the scale S RGE is asymptotically local if each of its
components in the expansion

I[α] =
∑

i,k≥0

ℏi
Iik[α]

k!

has an asymptotic expansion for large α (meaning “as all scales get included”), as a linear
combination of local functionals Θik,r, with coefficients which are functions fik,rC

∞[0,∞)
of the scale α :

Iik[α](x)
AE
=

∞∑

r=0

fik,r(α) Θik,r(x).

Remark. For energy scale this formalism is not compatible with the RGF action – if
SΛ is close to local then the RGE SΛ′ = WαβSΛ forces other SΛ′ to be “completely
nonlocal”. However, the asymptotic locality requirement is compatible with the length
scale. (“Length” is more geometric, i.e., local, while energy is more a matter of global
harmonic analysis.)

In this aspect the energy scale is more cumbersome, for instance its renormalization
schemes are more complex precisely because it is difficult to control preservation of locality.
We will use the length scale picture which makes renormalization transparent.

5.5.5. The definition of effective QFT in terms of the length scale. An effective QFT for
a free theory (E,Q, gE), is a family of “effective” quantum interactions I[L] = IL ∈ Iq
indexed by the length scales 0 < L <∞ and satisfying the following principles:

(1) [The definition of the space Iq of quantum interactions.] Each IL is a power

series in ℏ and in the fields: IL ∈ Ŝ(E∗)[[ℏ]] and the specialization to ℏ = 0 is a
classical interaction, i.e., it is at least cubic in the fields (and components are
local functionals).

(2) [Renormalization Group Equation.] For any 0 < ε, L <∞,

IL = W εLIε.

(3) [Locality.] The family I[L] is asymptotically local as L→ 0, i.e., each of its com-

ponents in the expansion I[L] =
∑

i,k≥0 ℏi
Iik[L]
k!

has an asymptotic expansion for

small L(40) as a linear combination of some local functionals Θik,r, with coefficients
which are functions fik,rC

∞[0,∞) of the scale L :

Iik[L](x)
AE
=

∞∑

r=0

fik,r(L) Θik,r(x).

40For the length scale all scales get included as L→ 0.
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5.5.6. Locality in energy picture. To define it we use the translation between energy and
length scales indicated in 4.3.6. So, the meaning of locality axiom in 5.5.2 is that the
family SΛ of energy scales actions becomes asymptotically local when it is translated into
a family of length scale effective actions. We notice that the translation procedure is
compatible with RGE:

Lemma. The translation between energy and length scales induces a bijection of solutions
of the length-RGE and solutions of the energy-RGE which are of “moderate growth”.

5.6. Strong unipotency of the family of operators WP , P ∈ S2E. We order N2

lexicographically by “ℏ before E”, i.e., (i, k) < (i′, k′) if i < i′ or i = i′ and k < k′. For

Θ⊆N2 denote Iq,Θ def
=

∏
(i,k)∈Θ ℏiI(k)

q and let I 7→IΘ def
=

∑
(i,k)∈Θ ℏiIik be the projector

Iq → Iq,Θ.

similarly, we define the Θ-component of the operator W = W εL by WΘ : Iq → Iq,Θ with

WΘI
def
= (WI)Θ.

Lemma. Let P be a propagator and α ∈ N2.

(a) The α-component of WP (I) only depends on I≤α :

[WP (I)]α = [WP (I≤α)]α.

(b) More precisely,

[WP (I)]α − WP,α(I<α) = Iα.

(c) WP is an automorphism of the Iq,α-torsor Iq,≤α։Iq,<α, i.e., for I ∈ Iq,≤α and J ∈ Iq,α
[WP (I + J)]≤α = [WP I]≤α + J.

Sublemma. (⋆) If Ir,s appears in the product Iγ =
∏

v∈Vγ
Igv ,kv ∈ S(E∗) for a graph

γ ∈ RG (in other words, if there is a vertex v of γ with genus r and valency s), then in
N2 we have

(r, s) ≤ (gγ, tγ).

Moreover, equality happens for precisely one graph γ, the “(r, s)-star” graph ⋆r,s ∈ RG
which consists of one internal vertex v with s tails and of genus gv = r.

Proof of the sublemma (⋆). Suppose that Ir,s appears at the vertex v. Clearly, r = gv ≤ gγ.
Now, if gγ > r then (gγ, kγ) > (r, s), so we only need to consider the case r = gv and
check that s ≤ kγ and that the equality s = kγ holds iff γ ∼= ⋆r,s.

However, r = gv implies gv = gγ and this tells us that

• (i) b1(γ) = 0, i.e., γ is a tree and
• (ii) vertices u 6= v have genus 0, so stability implies that their valency ku is ≥ 3.
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Now we will observe that the external valency of γ is

tγ = kv +
∑

u∈Vγ−{v}

ku − 2 = kγ + 1− 2|Vγ|.

This will imply the remaining claims of the sublemma (⋆) since ku ≥ 3 gives

tγ − kv =
∑

u∈Vγ−{v}

ku − 2 ≥ |Vγ − {v}| ≥ 0,

so tγ − kv ≥ 0 and equality is equivalent to v being the only vertex.

The above formula is clear when presented as a picture but longer when described in
words. For this we grow the graph γ from the root v. Let γ1 be the subgraph of γ that
consists of the vertex v and all prongs from v, clearly tγ1 = kv. Now we obtain γ2 from
γ1 by adding the vertices of γ that appear at the ends of tails of γ1 and the prongs that
stem from these vertices. Each of the new vertices u contributes ku − 2 to tγ2 − tγ1 . The
−2 comes from killing the prong in γ1 that goes from γ1 to u and also the one from u
towards γ1. Etc.

Proof of the lemma. Let α = (i, k) ∈ N2. Recall that

(WP I)α =

∫

RGα

ℏgγwγP (I) and wγP (I) = 〈Pγ, Iγ〉

RGα⊆RG are the graphs γ with (gγ, tγ) = α and the tensor Iγ is obtained by putting at
each internal vertex v the tensor Igv ,kv .

Now (a) follows from the sublemma (⋆) – if Ir,s contributes to the α-component of WP I
then this happens through some γ ∈ RGα and then the sublemma says that (r, s) ≤ α.

(b) The difference

[WP (I)]α − [WP (I<α)]α = [WP (I≤α)]α − [WP (I<α)]α

is given by the terms ℏiwγP (I≤α) for graphs γ ∈ RGα such that (I≤α)γ features Iα. The
sublemma (⋆) says that there is just one such graph γ = ⋆α. For this graph, Pγ = 1
since γ has no edges, hence wγP (I) = Iγ. Also, since γ has just one vertex at which Iα is
positioned we have Iγ = Iα.

(c) follows from (a) and (b),

[WP (I+J)]≤α = [WP (I+J)<α]≤α + (I+J)α = [WP (I<α)]≤α + Iα+J = [WP (I)]≤α+J.
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Corollary. For any propagator P , the graph operator WP preserves the descending filtra-
tion of the trivial vector bundle V = Iq by the trivial vector subbundles Iq,≥α, α ∈ N2.
Moreover, WP is identity on Gr(V ).

Proof. WP preserves Iq,≥α since part (a) of the lemma says that for I ∈ Iq,≥α and β < α
we have (WP I)β = [WP I≤α]β = [WP 0]β = 0. Now, part (b) of the lemma implies that
WP is identity of Grα(V ).

Remark. In the case when P = P εL for the length RGF this has been deduced by calcu-
lating the corresponding scaling connection in ....

Question. What is the group W generated by all operators WP on Iq ?

Appendices

5.7. Appendix A. Asymptotic expansions. We consider asymptotic expansions (AE)
of a function at an endpoint of the interval where function is defined. We will choose the
interval to be (0,∞) with coordinate ε and consider the AE at 0.

The Asymptotic Expansion at ε = 0 of a function σ(ε) on (0,∞) is a sequence of functions
σn(ε) such that

• For sufficiently large n, σn approximates σ for ε near 0 in the following quantitative
sense: the error is controlled by εdn for some dn ≥ 0 :

lim
ε→0

σ(ε)− σn(ε)
εdr

= 0.

• The approximations improve for larger n in the sense that (i) dn’s are nondecreas-
ing and (ii) dn →∞.

Remarks. Notice that this does not imply that σn(ε)→ σ(ε) for any particular ε. Neither
can we conclude that σ or any of σn have limit at ε = 0.

5.7.1. Summability. This is the problem of finding for a sequence of functions σn a (canon-
ical) function σ such that the sequence σn is its asymptotic expansion. As σn usually
appears as a sequence of partial sums of a formal series

∑∞
0 fn, this question is called

summability.

The Watson-Nevalinna theorem on Borel summability gives an affirmative answer for
series

∑
cnε

n, such that
∑

cn
n!
εn converges and the sum extends analytically.

5.7.2. Feynman expansions and asymptotic expansions. It would be nice if the perturba-
tive expansions of a QFT would be an asymptotic expansion. This is known for the φ4

theory using the Watson-Nevalinna theorem. For this reason we sometimes speak loosely
of perturbative expansions of a QFT as “asymptotic expansions”.
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5.8. Appendix B. Some points of view on renormalization. We will use renormal-
ization as a formal procedure that removes infinities.

However, physicists also have a more conceptual framework for renormalization as a flow
in the space of possible values of all possible couplings, i.e., the dimensionless constants
(parameters) of the theory. Here, renormalization has the effect (like a mass of a certain
particle of shifting the bare values of couplings to the effective values. The bare values
are those that one knows from other experiments, the effective values are the ones that
“effectively” appear in a given situation, in other words if we plug in the effective values
in formulas, we get the numbers actually observed in experiments. This shift of values is
not mystical, it is simply the effect of some interactions which we prefer to keep out of
the picture because we do not understand them well enough.

5.8.1. Example: Hydrodynamics. The formalism of renormalization can be trace to hydro-
dynamics to explain why acceleration of the ping pong ball in water as it rushes towards
the surface. A naive computation predicts acceleration around 11 times the the gravi-
tational acceleration g. When one analyzes the situation precisely it turns out that one
formal way to deduce the correct answer is to replace in the naive computation the actual
mass m of the ball (the “bare mass”) with its “effective” version which is m+ 1

2
M where

M is the mass of water that the ball can hold. This renormalization of the mass is just
a formal way to account for (or sweep under the rug) the effect of the interaction of the
ball and the water. (The actual acceleration is < 2g.)

5.8.2. Mathematics. The structure of a certain algorithm (HPBZ) for a specific incar-
nation of renormalization, the minimal subtraction with dimensional regularization, has
been explained by Kreimer and Connes-Kreimer in terms of a Hopf algebra structure on
graphs. This is further reformulated in terms of the Birkhoff factorization of loops (into
positive and negative), the Riemann-Hilbert correspondence and a relation to motivic
Galois groups [Connes-Marcolli].

5.8.3. Several story lines. All together, renormalization appears with seemingly disparate
justifications:

• (i) Regularization of infinities (by any means, however disrespectful).
• (ii) A mechanism that explains variation of parameters in Lagrangian with the

observation scale (for instance the variation of the charge we perceive when we
vary the distance from the source of this charge, see 5.10.7).
• (iii) The “physics depends on the scale” principle. It appears in various guises, for

instance, the fact that a given experiment has restricted energies available, so we
are only seeing a part of the world that lives at these energies, not the true picture
of the world.

5.9. Appendix C. Renormalization in Statistical Physics.
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5.9.1. Statistical Physics. More recently, renormalization idea has been crucial in Statis-
tical Physics. Here, the primary concern of renormalization is the critical phenomena.

The mechanism is the “coarse graining” or “defocusing” of short distance degrees of
freedom, when long distance phenomena are of interest. This only affects the parameters
of the system while keeping the interesting physical aspects the same. This transformation
is called the Renormalization Group Flow (RGF) in the space of parameters (this is not
a continuous flow, just an action of (N,+)). Now one studies the RGF and what it says
about the system.

5.9.2. Coarse graining: the block spin transform. This is a change of scale in the following
sense. One considers the effect of interactions of charges placed on a grid. When one
groups the points of the grid into, say, a×a blocks and moves further away, one may
effectively perceive a new grid whose points are the blocks of the original one. The charge
of a new point is the total effect of charges in the block.

However, this total effect often has simple approximations. Say, if charges (spins) are
s = ±1 we assign to each new block a charge s′ = ±1 by some rule that we call the spin
block transform. For instance the majority rule (when a is odd).

Now we rescale the picture by a factor of a, i.e., consider the new system of charges s′

on the new grid.

5.9.3. RG flow on Hamiltonians. We are interested in correlations of the system which are
statistical averages over a large set of typical configurations. These are calculated in very
much the same way as in QFT. When one passes from Feynman integrals to operator
formalism the action S is replaced by the Hamiltonian operator H and the correlator
formula goes from

∫
eS(x)φ to Tr[e−βHφ]. The latter is also the form of the correlator in

Statistical Physics, here the vector space has a basis of all possible configurations s of the
system.

While the original system had hamiltonian H that applies to configurations s, the blocked
system has a new HamiltonianH′ that applies to block configuration s′. The passage from
H to H ′ is very much the same as the passage from S[Λ] to S[Λ′] in QFT, the “integrating
out” of degrees of freedom between two scales Λ,Λ′ appears here as integrating out the
short degrees of freedom (charges of points in the original grid) by taking the trace over
all possible configurations in each block. (The reason is the same: the correlators must
be invariant of the scale.)

5.9.4. The Renormalization Group assumption. One assumes that after any number of
block transforms, the dominant interactions will always be short range (something like
“nearest neighbor only”). This assumption (or really its consequences), has been verified
experimentally, by numerical simulations and theoretically in solvable systems.
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The assumption implies that the new Hamiltonian H′ is supposed to have the same form
as H (the same formula). The only thing that changes is the vector σ of couplings
(parameters). This change σ 7→σ′ is the RG flow on the space of couplings.

One can iterate this to get a sequence of systems Σ0 = Σ,Σ1 = Σ′,Σ2, ... with parameters
σ0, σ1 = σ′0, σ2 = σ′1, .... Here, the emphasizes is on the critical values σ of parameters that
correspond to self-similar systems, i.e., the fixed points σ of the renormalization flow
on the space of parameters: σ′ = σ. (For instance at a critical temperature the rescaling
does not change the statistics of the system.) These critical values govern the “long term
behavior” of the flow σ0, σ1, ...

5.9.5. QFT and Statistical Physics. The QFT analogue of critical values in Statistical
Physics are the renormalizable theories, the theories that are approximately scale-invariant
(up to logarithmic terms), for instance the conformal field theories. Again, these corre-
spond to fixed points of the renormalization flow in the space of parameters (couplings).
A strong version of this analogy: classical critical systems in Statistical Physics are in a
certain limit equivalent to renormalizable euclidean quantum field theories (Wilson).

This has provided an explanation of the Universality Phenomenon: . “Many systems with
different constituents and microscopic interactions exhibit the same critical behavior in
the scaling limit.” The point is that it was known on the QFT side that there is often
only a handful (finite or countable) of theories with given symmetries.

This observation is said to have led to a unification/cross-fertilization of methods of (i)
particle physics, (ii) statistical mechanics and (ii) condensed matter theory. One example
is the application of conformal field theory (CFT) (which was first developed as a tool in
string theory), to statistical mechanics and condensed matter physics.

The correspondence has strong numerical power in Statistical Physics – the renormal-
izable quantum field theories in two dimensions have been classified and in many cases
they providing exact expressions for critical exponents, correlation functions, and other
universal quantities in statistical systems.

5.10. Appendix D. Renormalization of charge as interaction with vacuum. This
involves a beautiful picture that seems to be standard in physics. Besides explaining
renormalization of charge of an electron in QED, this is also the mechanism of the Hawking
radiation out of the black hole. The picture is of the effect of

Pairs of particles that appear from the vacuum and then disappear (cancel each other).

5.10.1. Virtual particles. We will need the point of view that there are two kinds of
particles:

(1) The usual ones. These can exist forever. The reason is that they have their own
substance like energy or momentum.
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(2) Virtual particles. These are short lived because they have to borrow their sub-
stance from the vacuum and then they have to return it shortly.

Therefore, vacuum is really a rich structure. It is OK to think that it is a soup of particles
that are balanced hence not perceived, except that when this “Dirac sea” of particles is
disturbed by something like interaction of two particles, the soup bubbles and emits pair
of particles which are now perceivable since they have a measurable effect on the usual
particles. About vacuum one does not understand much more than this, so we summarize:

(1) This picture is satisfactory in the sense of theoretic computation. One can compute
with it and (some) results agree with experiments (for instance for the charge
renormalization).

(2) Philosophically, the picture is incomplete: who is vacuum that borrows and takes
back?

(3) One measurable quantity related to the vacuum is the vacuum energy which is
often called “the” cosmological constant (see 5.10.6). However, this leads to a
cosmological constant problem – the measured values and theoretical predictions
differ sharply.

5.10.2. Vacuum mediation of particle interactions by virtual (anti)particles. The idea is
that when two particles meet, they interact through virtual particles emitted by the
vacuum. We will consider it here in the path integral picture, i.e., in terms of Lagrangians
and Feynman diagrams.

A standard example is when two φ-particles called 1 and 2, collide and emit two more
φ-particles 3 and 4.

Let us draw this as a graph with one vertex (the collision) and 4 tails (the trajectories of
two incoming and two outgoing particles). The time direction will be from time t1 when
we have particles 1, 2 to time t2 when we have 3, 4.

However, the mediation picture says that the vertex v at which the interaction takes
place, does not really exist. It is “smoothed out” by a small circle which seems to be the
trajectory of a pair of two virtual “ψ” particles.

The four tails 1, 2, 3, 4 meet the circle at four trivalent vertices 1 , 2 , 3 , 4 divide the

circle into four segments 12 , 13 , 24 , 34 . Now the interactions actually happen at
the four vertices on this circle, we label the vertex at which the i-tail is attached by i. At
each vertex one φ particle (a tail) meets two ψ particles, (two segments of a circle). This
scenario of interaction is seen in the Lagrangian (action) as the φψψ term

∫
φψψ.
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5.10.3. The interaction. The story say that the approaching φ-particles 1, 2 disturb the
vacuum and produce a pair of virtual particles ψ1, ψ2 which emerge at the center of the
segment 12 . (One of ψ1, ψ2 is perceived as a particle and the other one as an antiparticle.)

Then ψ particles ψi (i = 1, 2) travels to i on the segment 12 , in order to interact with
the φ-particle φi. So, segment 12 is the picture of the emergence of the ψ particles.

The φ particles disappear when they meet the ψ particles(?). After ψ1 reaches vertex 1

it continues on the segment 13 to the vertex 3 and ψ2 continuous on 24 to the vertex

4 .

Here, φ-particles get reconstituted as 3 and 4 , while ψi continue on the segment 34
where they meet and annihilate each other.

5.10.4. Temporary violation of conservation of momenta (energy). This is one aspect of
nonstandard physics in this story.

Let pi be the momentum of particle i. The conservation of momenta (energy) in the time
interval [t1, t2] appears as a factor δ(p1 + p2− p3− p4), i.e., the ingoing total momentum
p1 + p2equals the outgoing total momentum p3 + p4.

However, if we cut the timeline at some t′ between t1, t2, then the conservation of momenta
(energy) is violated on intervals [t1, t

′] and [t′, t2]. For the time interval [t1, t
′] the point

is that whatever p1, p2 were, the momenta of ψi can be essentially arbitrary. The reason
is that ψi “borrow” momenta (energy) from the vacuum. Then they have to return these
on the time interval [t′, t2].

5.10.5. Singularity of the amplitude of this diagram. The point that the momentum of ψi
is arbitrary means that we have to integrate over all possible momenta 0 ≤ pi ≤ ∞. The
four segments 12 , 13 , 24 , 34 are four edges in the diagram (graph), each contributes
a propagator P , so the integrand has the fourth power P 4 of the propagator. This makes
the integral divergent.

So, one is forced to regularize the integrals with cutoffs, say 0 < ε ≤ pi ≤ L <∞.

5.10.6. The cosmological constant problem. The energy of the empty space is the eigen-
value of the Hamiltonian H on the vacuum vector

H |0〉 = Evac·|0〉 .

The formula for the Hamiltonian is something like

H =
∑

n∈Z

pn(ana
+
n + a+

n an),

where an are the annihilation operators so they kill vacuum.
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So, Evac comes from the commutators [an, a
+
n ] = 1

2
. This topically gives a constant (say,

the light speed) times a sum of powers of natural numbers

Evac =
∑

n

nk = cζ(−k).

The creation and annihilation of pairs is here reflected in the Hamiltonian formula

H =
∑

n∈Z

pn(ana
+
n + a+

n an).

A (Nobel) Problem. The vacuum energy predicted by computation is much larger than
what is actually measured:

Etheory
vac ∼ 10100 Emeasurement

vac .

5.10.7. Screening of the charge. The renormalization of the charge is an effect of this
interaction with the vacuum.

5.10.8. Does the vacuum mediation smooth out the interaction? We describe a collision
of point sources in terms of a diagram (graph) which is still a singular object?

Remark. The choices of a complement to a subspace U⊆V form a torsor for Hom(V/U, U)
since any choice of a complement Σ gives a parametrization of complements by

Hom(V/U, U) ∼= Hom(Σ, U) ∋ A7→ΓA
def
= (id+ A)Σ.

So, renormalization schemes form a torsor for Hom(P/P≤0,P≤0).

5.11. Appendix. Graph weights and motives. The reason why graph weights
wγεL(M,Q, I) are asymptotically periods is that they are periods for the standard choice
of the data (M,Q, I) (M = Rn ...) and the ε→ 0 asymptotics is independent of M .

The corresponding algebraic variety Uγ is the complement in C[Eγ] (or P(C[Eγ ]) of a
hypersurface given by the Kirchoff graph polynomial Kγ, The corresponding motives mγ

are called Feynman motives.

Feynman motives are Tate motives for small graphs but not in general. The weights
of Tate motives are multiple zeta values and the converse is implied by Grothendieck’s
conjecture.

The appropriate “Euler characteristic” χγ = χnew(UΓ) behaves as a Feynman weight, i.e.,
χ⊔γi

=
∏
χγi

(Aluffi-Marcolli). Then χγ is called a motivic Feynman rule.(41)

On the level of Feynman motives and motivic Feynman rules the divergence of Feynman
integrals is approached through resolutions, deformation and interpretation via local Igusa
functions.

41“Feynman rule” means (a formula for) a graph weight.
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Y. ToFix

6. Z. Periods

Periods are integrals of algebraic differential forms over homology cycles. (Any such
integral can be reduced to an integral of a top differential form.)

6.0.1. Relation to motives. If we choose representatives ωi for a basis of de Rham coho-
mology and representatives αj for a basis of singular homology. Then the period matrix
ΠX ∫

αj

ωi

is an isomorphism of de Rham and singular cohomology.

6.0.2. Period matrix. For X defined over Q the period matrix is defined as an element of

GLn(Q)\Mn(C)/GLn(Q).

Example. For X = Pn the periods are 1, 2πi, ..., (2πi)n. (The period matrix is diagonal
and the these are the diagonal entries?)

6.0.3. Grothendieck’s conjecture. For X defined over Q, the period matrix determines the
Q-motive MX of X.

Example. The motive MX of X = Pn splits into n + 1 motives and their periods are
1, 2πi, ..., (2πi)n. (The period matrix is diagonal and the these are the diagonal entries?)

6.0.4. Tate motives and multiple zeta values. The periods of Tate motives are multiple
zeta values. Grothendieck’s conjecture implies

Corollary. The only Z-motives whose periods are multiple zeta values are Tate motives.

Question. Should the t-structure on motives be in in terms of periods or period functions?
(The question does not make any sense. Anyway.)

6.1. Etale cohomology of Q-varieties. It carries an action of GQ. With this structure
we can think of it as a realization of a motive. Then the analogues of periods (?) are the
integers Np, the count of the number of points of the reduction mod p.

6.1.1. Tate conjecture. The numbers Np(X) for almost all p determine the motive of X.

Example. For Tate motives Np’s are polynomials in p. The Tate conjecture implies the
converse:



86

Corollary. The only Z-motives such that Np is polynomial in almost all p are mixed Tate
motives.

Remark. This is a nice way to check whether the motive MX of a given variety is a Tate
motive, i.e., whether its periods are multiple zeta values: calculate Np(X)’s, see whether
they are polynomials of p.

6.2. Multiple zeta values. The multiple zeta function is defined as

ζ(s1, ..., sk) =
∑

n1>n2>···>nk≥1

1

ns11 · · ·nsk
k

The multiple zeta values are values at integers (s1, ..., sk) ∈ Zk, with z1 > 1.

Lemma. Multiple zeta values are periods. Explicitly,

ζ(s1, ..., sk) =

∫

1>t1>···>tk>0

ωs1(t1)· · ·ωsk
(tk)

where,

ω0 =
dt

t
, ω1 =

dt

1− t and ωr = ωr−1
0 ∧ω1 for r ≥ 2.

6.2.1. The hypersurfaces XΓ in AEγ . To a graph Γ one associates the Kirchoff polynomial
in indeterminates xe indexed by edges e ∈ Eγ

KΓ
def
=

∑

T∈SpTrΓ

∏

e∈EΓ−ET

xe.

The summands are monomials corresponding to the spanning trees of Γ.

No let XΓ be the hypersurface in AEγ given by Kγ.

Kontsevich conjectured that the motive of XΓ is Tate, i.e., that the periods are multiple
zeta values. This was disproved by Belkale-Brosnan (though it is true for small graphs).

6.3. Algebro geometric Feynman rules (Aluffi-Marcolli). A Feynman rule is a
formula for the weights γ 7→wγ of graphs.

The point of view here is that the correct variety associated to Γ is

UΓ
def
= P(C[Eγ])−XΓ.

The result is that certain invariant χnew has the usual multiplicativity property of Feyn-
man weights

χnew(UΓ) =
∏

χnew(UΓi
).

This is nontrivial since on the level of varieties the Euler characteristic UΓ1⊔Γ2 is a Gm-
bundle over UΓ1×UΓ2 . (In particular the Euler characteristic χ does not work.)



87

6.3.1. Connes-Kreimer. Feynman rule is a character of the Hopf algebra H of Feynman
graphs. Namely, the collection of dimensionally regularized Feynman integrals U(Γ, p)
of all the 1PI graphs of a given scalar quantum field theory defines a homomorphism of
unital commutative algebras

φ ∈ Hom(H,K)

where K is the field of germs of meromorphic functions at z = 0 ∈ C.

The coproduct in the Hopf algebra is then used in to obtain a recursive formula for the
Birkhoff factorization of loops in the pro-unipotent complex Lie group

G(C) = Hom(H,C).

This provides the counterterms and the renormalized values of all the Feynman integrals
in the form of what is known in physics as the Bogolyubov recursion, or BPHZ renormal-
ization procedure.

In particular,

(1) any character of the Hopf algebra H can be thought of as a possible assignment
of Feynman rules for the given field theory, and

(2) the renormalization procedure can be applied to any such character as to the case
of the Feynman integrals.

The characters need not necessarily take values in the field K of convergent Laurent series
for the BPHZ renormalization procedure to make sense.

In fact, it was shown in how the same Connes-Kreimer recursive formula for the Birkhoff
factorization of loops continues to work unchanged whenever the target of the Hopf algebra
character is a Rota-Baxter algebra of weight λ = −1.(42)

In the Connes-Kreimer case, a Rota-Baxter operator it is the operator of projection of
a Laurent series onto its divergent part (a renormalization scheme!). The Rota-Baxter
identity is what is needed to show that, in the Birkhoff factorization = ( œwith S the
antipode and the product dual to the coproduct, the two terms φ± are also algebra
homomorphisms.

When working in the algebro-geometric world of the graph hypersurfaces XΓ, one would
like to have motivic Feynman rules, namely an assignment of an “Euler characteristic”

χnew

(the terminology views the class in the Grothendieck ring of varieties as the universal
Euler characteristic); to the graph hypersurface complements

Pn1 −XΓ.

42A Rota-Baxter ring of weight λ is a commutative ring R endowed with a linear operator T : RR
satisfying the Rota-Baxter identity

T (x)T (y)− λT (xy) = T (xT (y)) + T (T (x)y).

Such an operator is called a Rota-Baxter operator of weight λ.
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This should have the usual multiplicativity property of Feynman weights: Γ = ⊔ Γi implies
that

χnew(Pn−1 −XΓ) =
∏

χnew(Pni−1 −XΓi
).

Here the graph hypersurface XΓ is defined as the hypersurface in P(C[Eγ ]) given by the

vanishing of the Kirchoff polynomial KΓ = ΨΓ (in general the sum is over spanning

forests T rather than spanning trees). KΓ is multiplicative: K⊔ Γi
=

∏
KΓi

.

The usual Euler characteristic does not satisfy the desired property. In fact, if Γ is not a
forest, then for Γ = Γ1⊔Γ2, Pn1−XΓ is a Gm-bundle over the product

∏
i=1,2 Pni1−XΓi

,
hence its Euler characteristic vanishes.

The main result of the present paper is to show that a modification χnew which corrects
this problem exists in the Grothendieck ring of immersed conical varieties. It descends
to a class in the Grothendieck ring of varieties, and to a Chern-Schwartz-MacPherson
characteristic class of singular algebraic varieties,

Example. Motivic Feynman rule

U(Γ)
def
= [AEΓ −XΓ]L−n ∈ K0(VC)[L−1].

1 In this ring we can still consider the Rota-Baxter operator of projection onto the polar
part in the variable L.

Now, the renormalized Feynman rule is given by the universal CK formula of Birkhoff
factorization.

Example. Consider the basis of Q[T ] as a Q-vector space, given by the polynomials

π0(T ) = 1 and πn(T ) =
T (T + 1)(T + n1)

n!
for n > 0.

The shift operator in this basis

T (πn) = πn+1

is a non-trivial Rota-Baxter operator of weight −1. One can then apply the BPHZ
procedure with respect to this operator.

6.4. Divergences and renormalization (Aluffi-Marcolli). Their analysis shows that
when convergent, the parametric Feynman integral for (certain class of) graphs is a period
of a mixed Tate motive. The technique is to show that certain relative cohomology is a
realization of a mixed Tate motive m(X,Y ), where the loci X and Y are the complement
of the determinant hypersurface and the intersection with this complement of a normal
crossing divisor that contains the image of the boundary of the domain of integration σn
under the map τΓ , for any graph Γ with fixed number of loops and genus. Knowing that
m(X, Y ) is a mixed Tate motive implies that,

They sketch possible approaches to divergences in the Feynman weights.
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6.4.1. Blowups. [Bloch-Esnault-Kreimer] One can proceed to perform a series of blowups
of strata of a certain intersection until one has separated the domain of integration from
the hypersurface and in this way regularized the integral.

6.4.2. Dimensional regularization and L-functions. [Belkale-Brosnan] showed that dimen-
sionally regularized Feynman integrals can be written (when they converge), in the form of
a local Igusa L-function, where the coefficients of the Laurent series expansion are periods,
(Or log-divergent?)

6.4.3. Deformations. An alternative to the use of blowups is the use of deformations.
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7. XXX

Part 3. Chapter 1. Intro

0.1. Goals. The book lays complete foundations of PQFT (perturbative QFT) based on

(1) Feynman integral approach (including having an action S).
(2) Low energy effective actions S[Λ] approach of Wilson.(43)

Actually, in order to understand the meaning of locality at each scale, instead of “energy
effective action” we use “wordline length effective action”.

0.1.1. Perturbative limitation/aspect. The central limitation of Costello’s formalism is
that

(1) The spaces of fields E are vector spaces and he only considers infinitesimally small
fields.

(2) The Planck constant ℏ is an infinitesimally small (i.e., formal) parameter, and at
ℏ = 0 we get the classical limit.

• Here (1) appears through the assumption that the observables, i.e., functions on
fields, are formal power series:

O(E) def
= Ŝ•(Ev).

This class of functions is the technical framework of the book.
• The meaning of infinitesimally small fields is that these are perturbations of a

given field.
The fields of the “original” theory can actually be maps M → X. The pertur-

bative version of this theory deals with perturbations Φ of one chosen solution φ0

of the EL-equation. So, the fields are infinitesimal
Passing to Costello’s setting actually involves a choice of a linearization of the

theory at φ0, which replaces X with the φ0-pull-back of the tangent bundle of X.
Then the perturbations Φ of a solution φ0 are of the form Φ = φ0 + φ for small
sections φ of Tφ0Map(M,X) = φ∗0TX. These are the fields that lie in the vector
space |Ga(M,φ∗0TX.

Remark. Later Costello finds a way to circumvent the restrictions for gauge theory (via
the BV-formalism, i.e., the QME), and also in cases when the structure on the target
X can be described as a certain symmetry of X – a cdg-Lie algebra gX (holomorphic
Chern-Simons).

0.2. The space of quantizations of a classical theory.

43S[Λ] is also denoted Seff [Λ].
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0.2.1. Data.

• Space of fields E .
• The classical action S (a local functional on E)

Let T (n)(E , S) be the space of quantizations modulo ℏn+1 of the classical theory. We are
interested in T (∞)(E , S) = lim

←
T (n)(E , S).

Theorem. T (n+1) → T (n) is a torsor for the abelian group of local action functionals.

Question. T (∞)(E , S) should then itself be a torsor for some huge self-extension of local

action functionals O∞l (E , S) = lim
←
O(n)
l (E , S).

0.2.2. β-functions. They appear as coefficients of the RGF action on a given Lagrangian.
(Computed in examples.)

0.2.3. Renormalizable theories. This involves the renormalization group flow (RGF) on
the space of theories. This is essentially the rescaling of the spacetime Rn.

0.2.4. Perturbatively renormalizable theories. A theory is perturbatively renormalizable if
it has a critical scaling behavior, i.e., the RGF flow fixes it modulo the logarithmic
corrections.

Theorem. These are classified.

The method of construction of renormalizable theories (that satisfy the QME if we are
in the BV formalism) is again cohomological, i.e., obstruction theoretic as above. It
provides existence when obstruction cohomology group vanishes and then the space of
quantizations is a torsor for another cohomology group.

Remark. Here renormalizability means the vanishing or a calculation of a certain coho-
mology group. Traditionally it involves Feynman diagram manipulations.

0.3. Example: Gauge theory. GT is made to fit this formalism by combining effective
action idea and the BV formalism.

Here gauge symmetry of the family S[Λ] is expressed as: S[Λ] satisfies the scale Λ QME
.

0.3.1. Renormalizability of pure YM. It is proved by a calculation of Gelfand-Fuchs co-
homology. ABBA
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1. Feynman integrals

Feynman’s formulation of QFT in terms of functional integrals says that the actual uni-
verse is a quantum superposition (“statistical superposition ”) of all possible configura-
tions, i.e., fields.

1.1. Lorentzian (physical) version. Here M is a manifold with a Lorenz signature.

Each field is one description of the physical system (“the universe”). Our basic example
is the single scalar field theory, i.e., the fields are E = C∞(M).

1.1.1. The action. The action S is an integral over M of the Lagrangian L:

S(φ) =

∫

x∈M

L(φ)(x).

The Lagrangian L is a sum of the free part Lfree and the interaction part I.

Example. For a massive field the free part is

Lfree = φ(∆ +m2)φ

A typical interaction is

I(φ) = φ4.

1.1.2. Observables. These are the measurements one can make. The result depends on
the state of the system, so observables are functions on fields

Ob(U) = O(E(U)).

The most standard class are the observations that can be made by an observer at the

point x ∈ M . First, at x ∈ M we have observables Ox def
= evx, the evaluation of the

field φ at x, More generally, we also have the derivatives of φ at x, i.e., the observables
Ox,D = evx(Dφ) for differential operators D.

1.1.3. Correlators of a family of observables. These are integrals over fields

〈O1, ..., On〉 def
=

∫

φ∈E(M)

Dφ eiS(φ)/ℏ O1(φ)· · ·On(φ), Oi ∈ Ob.

They measure the relation between quantities in the theory, i.e., various measurements.

1.1.4. The Problem. There is no natural measure Dφ on the space of fields, we only
imagine it. When E(M) is a vector space, we would like it to be a Haar measure.
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1.2. Euclidean version of QFT: a statistical theory. Here M is an Euclidean
manifold.(44) This setting gives

(1) A statistical interpretation of Feynman integrals.
(2) A large supply of manifolds.

This allows calculations by cutting and pasting. These are not physical as they
do not have Lorentzian analogues.

Fields and Lagrangians are as before except that instead of a Minkowski Laplacian we
now have an Euclidean Laplacian. The correlator integral is changed by replacing iS/ℏ
by −S/T .

1.2.1. Probability and Temperature. Here T = −iℏ is interpreted as temperature of the
system and e−S(φ)/T as probability (up to an overall normalization factor Z) that the
system be in the state φ.

1.2.2. Perturbative aspect. In the Euclidean picture it means that

• as T → 0, the universe freezes into one classical solution φ0;
• we only consider what happens for infinitesimally small T (a formal variable), so

fields φ only vary infinitesimally away from φ0.

The same happens in the Minkowski picture. For ℏ = 0 the world is classical, i.e.,
described by a solution φ0 and we consider ℏ as a formal variable.

2. Wilsonian strategy of low energy theories

The “low energy” concept will be first described in terms of the spectral analysis of the
Laplacian. This is intuitive but not local. Then it will be (re)formulated in terms of the
length of worldlines because this approach is better suited for describing the meaning that
locality acquires when one considers different scales.

2.0.3. Transition to the worldline view. The switch from energy to length involves passing
from formal (i.e., non defined) functional integrals over fields to their well defined per-
turbative expansions (by applying Wick lemma formally). These perturbative expansions
are sums indexed by Feynman graphs but have a geometric interpretation as integrals
over the moduli of evolutions of finite systems of particles. So, the switch involves passing
from energy of fields in QFT to worldline length of particles (a kind of QM).

2.1. Effective actions S[Λ] at the energy scale ≤ Λ. This part is the historical
introduction to the idea of effective QFT. Later we will work in the length scale.

44The book works in Euclidean formalism.
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2.1.1. Decomposition of fields according to the energy. Here the harmonic analysis of the
Laplacian operator on the space of fields E represents it as an integral

∫ +∞

0

E(Λ) ∂Λ

of eigenspaces of the Laplacian. So, we have summands

E≤Λ ⊆ E .

2.1.2. Observables Ob≤Λ of energy ≤ Λ. This embeds the “energy ≤ Λ-observables”

Ob≤Λ
def
= O(E≤Λ)

into all observables Ob, via the projection E։E≤Λ.

The strategy of considering only the phenomena of energy ≤ Λ is

• (i) realistic as this is what we can observe in any given experiment,
• (ii) it kills the infinities in QFT.

So, infinities only arise when we think of the classical Lagrangian S as adequate for all
energy scales including the infinite one. Wilson’s insight was that physics depends on the
scale, i.e., that what governs the behavior at scales i≤ Λ is not the classical Lagrangian
but the “scale Λ Lagrangian S[Λ] (the “effective” Lagrangian), which one has to deduce
from S

2.2. Renormalization group flow: the length scale. Recall the meaning of the tran-
sition to the worldline view from 2.0.3.

Passing from the energy scale Λ to the worldline length L is roughly by

L ∼ 1

Λ
.

(“Energy of a vibrating string is higher if the length of waves is lower.”)

Therefore, “energy ≤ Λ” corresponds to “length ≥ L”. So, the effective action S[L]
will now describe phenomena that involve lengths ≥ L. The high energy limit Λ → ∞
corresponds to the low length limit L→ 0.

In the setting of the length scale the action at length scale ≥ L is denoted S[L] and RG
flow is denoted Wε,Λ where usually ε ≤ L. Now the main step in the quantization of
classical theories is to make sense of W0,L = limε→0 Wε,L.

2.2.1. Propagators. The main purpose of the perturbative expansion of the partition func-
tion (or of the RGF flow W ) over (stable) Feynman graphs is to deal with the “non-free”
part of the action I = S − Sfree which in the worldline picture describes interactions be-
tween particles. The weight associated to a particular graph is calculated combinatorially
using the propagator.
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The free part of the Lagrangian is φQφ = 〈φ,Qφ〉 for an invertible quadratic operator
Q.(45)

While Q appears in the Feynman functional integral, the incarnation of Q that figures
in its perturbative expansion is the propagator P . Propagator itself is an integral of the
heat kernel K of Q which is the most fundamental object in the analysis which we will
use.

Propagator P (x, y) is a distribution on M2 which is a smooth function off the diagonal.
Here are several views on P (x, y)

(1) It is the integral kernel for Q−1.
(2) P (x, y) measures the correlation of values of fields at points x, y ∈ M in the free

theory given by Q.
(3) P is an integral of the heat kernel K of Q

P =

∫ ∞

τ=0

dτ Kτ .

(4) P (x, y) is a functional integral over the spaces P(x, y) of paths, i.e., worldlines
of a particles that travel from x to y. (Here, Pl(x, y)⊆P(x, y) are the paths that
take time l.)

P (x, y) =

∫ ∞

l=0

dl

∫

f∈Pl(x,y)

Df e−E(f);

the action is the energy of the path E(f) =
∫ l

0
|df |2/2.

Remark. The heat kernel Kl(x, y) is the integral kernel for e−lQ. So, formula (4) follows
from (3) and the functional integral interpretation of the heat kernel:

Kl(x, y)
def
=

∫

f∈Pl(x,y)

Df e−E(f).

2.2.2. Worldline length or “proper time”. The parameter l in Feynman’s formula (3) will
be called the worldline length. Its physical interpretation is as proper time – the time on
the worldline, i.e., the time measured by the clock traveling on the worldline. (It is not
related to the time on the spacetime.)

2.2.3. The perturbative expansion over Feynman graphs of the interaction part of the
action. From the wordline point of view (“particles in the spacetime”), the quantity I(φ)
describes how particles interact.

These interactions are described by Feynman graphs because these graphs are the “world-
graphs” of a family of particles traveling in spacetime (at random). The information in

45For the massive scalar field theory Q = ∆ + m2.
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the world-graph is obvious – these are drawings of all ways for particles to come together
and to break apart.

2.2.4. Relation to strings. In String Theory. particles are not points but (small) loops, so
their worldgraphs are not Feynman diagrams but their thickenings – the 2d surfaces.(46)

2.3. Renormalization group flow as a sum over Feynman graphs. The RG flow
consists of operators Wε,L on the space Iq⊆ Ol(E)[[ℏ]] of quantum interactions.

Here we define flow operators using just linear algebra. The basic elements of this for-
malism are the weights wγεL of Feynman graphs γ. The weight wγεL is an operator

wγεL : Iq −→ Odγ (E)⊆ O(E)
where dγ is the external degree of the graph γ. It is defined as a contraction of two tensors

wγεLI
def
= 〈Pγ, Iγ〉.

Now, WεL is an integral over the moduli space of csFG of connected stable Feynman
graphs

WεL
def
=

∫

γ∈csFG

ℏgγwγεL

where gγ is the genus of the Feynman graph γ.

xx

First, they have expansions

WεL
def
=

∑

i,k≥0

ℏi W (ε, L)ik

in the sense that for I ∈ Iq
WεLikI

def
= (WεLI)ik hence WεLI =

∑

i,k

ℏiWεLikI.

The ik-coefficient is an integral over the moduli space of csFGik of connected stable
Feynman graphs γ of genus g and external degree (“external valency”) k,

WεLik =

∫

γ∈csFGik

wγεL.

yy

(1) The (inner) edges of γ are labeled by the (ε, L)-propagators

Pε,L
def
=

∫ L

|tau=ε

dτ e−mτ
2

Kτ .

46An impressive ingredient of this parallel is the use of stable Feynman graphs and stable curves.
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(2) the vertices of valency k (and genus i) labeled by the coefficient Ii,k[ε] in the
expansion of

I[ε](φ, ℏ) =
∑

i≥0

ℏiIk[ε](φ) =
∑

i≥0

ℏi
∑

k≥0

Ii,k[ε].

Here I[ε](φ) is a function of ℏ, φ, so the coefficient
∑

k Iik[ε](φ) of ℏi is a function
of the field φ. In a perturbative theory fields live in a vector space (sections of a
vector bundle) and then Ii,k is just the homogeneous component of Ik of degree i
in φ.

Here valency k of a vertex means that k-particles collide at this vertex (some of them
incoming and the rest outgoing).

Remark. For the meaning of (3) see the picture 1 on page 19.

2.3.1. Summary of length scale formulations of RGF. We will use the phrase

“allow particles to travel between interactions for the length in interval J .

It means that the integral involved is over worldlines f “whose length scale” is in J ,
meaning that the length of each leg is in J .(47)

The case J = (L,∞) appears for correlator integrals of observables Oi that have “length
scale ≥ L”, meaning that each Oi naturally defined on worldlines of length scale ≥ L.

The case J = [ε, L) appears for the renormalization flow integrals Wε,L where produce
S[ε] from S[L] by integrating out the worldlines with length scale between ε and L.

Here are some formulations of RGE:
1. The correlator formulation. A family I[L] of quantum interactions satisfies RGE if the
correlators are independent of L. More precisely, the I[L]-correlator of observables on the
length scale ≥M is independent of L as long as L ≤M . A restatement:

“If we allow particles to travel for at least length M between interactions. then then for
L ≤M the I[L]-correlator does not depend on the choice of L.”(48)

2. The action formulation. For ε < L, I[L] is obtained from I[ε] by integrating out the
worldlines whose proper time is between ε and L. Restatement:

“I[L] can be obtained from I[ε] by allowing particles to travel between interactions
along paths whose proper time is in [ε, L), and then interact using I[ε].”

3. The Feynman graph formulation. One obtains I[L] from I[ε] by applying operator
Wε,L which is a sum over Feynman graphs.

47A “leg” means here an internal edge of the metrized graph on which map f is defined.
48One also says this with one variable: “if we allow particles to travel for at least length L between

interactions. then then the I[L]-correlator does not depend on the choice of L.”
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3. Wilson’s definition of QFT in terms of effective actions: the energy scale
formulation

Wilson defines a continuum QFT as a family of “effective actions” S[Λ] indexed by energy
scales 0 < Λ <∞ and satisfying the following principles:

(1) [Physics depends on the scale.] Each S[λ] is a function on Ob≤Λ the observables
of energy ≤ Λ. It is a power series in ℏ and in the field φ.

(2) [Classical limit.] The classical part (i.e. the image modulo ℏ) S[Λ]|ℏ=0, is of the
form

S[Λ](φ) =

∫

M

I(φ) − φQφ

where the free part is given by an invertible hermitian linear operator Q,(49) and
the interaction part I(φ) is at least cubic.(50)

(3) [Renormalization Group Equation.] For Λ′ < Λ, S[Λ′] is determined from S[Λ] by
the RGE.

(4) [Locality.] S[Λ] satisfies a Λ-locality axiom formulated below in 4.2.3.

4. Locality Principle in EQFT: the length scale formulation

4.1. Principle of locality. Roughly it says that

Interactions between fundamental particles only happen at points.

In other words, particles only interact when they are at the same point of space. This
includes the principle

NO spooky action at a distance.

In other words if particles interact at a distance this is through the medium of other
particles between them.

In terms of the action the locality principle appears as the requirement that the Lagrangian
is a local functional on fields. This means that it is a function on the jet bundle, i.e., a
finite sum of products Diφ for differential operators Di.

In terms of the effective action formalism, the locality is is not really an absolute principle
– it holds only if we include all scales. So the at any given range of scales it only holds
approximately and the approximation gets better as we allow larger range. A precise
formulation is that locality holds asymptotically (the definition of asymptotic expansions
is in 5.7 below).

49For instance Q = ∆ + m2 in the massive scalar field theory.
50We may write this as I = O(φ3).



99

4.2. Locality in EQFT: the notion of asymptotic locality. We will see that the formu-
lation of the locality principle of EQFT in the language of energy scale is not satisfactory,
so we will restate it in terms of the length scale.

4.2.1. Energy scale. Our first attempt is to say that a solution S[Λ] of RGE is asymptot-
ically local if it has an asymptotic expansion for large Λ, as a linear combination of local
functionals Θi, with coefficients the function of the scale Λ :

S[Λ](φ)
AE
=

∞∑

i=0

fi(Λ) Θi(φ).

This formalism is not compatible with the RGF action – if S[Λ] is close to local then RGE
forces S[Λ′] to be “completely nonlocal”.

4.2.2. Length scale. We say that a solution S[L] of RGE is asymptotically local if it has
an asymptotic expansion for small L, as a linear combination of local functionals Θi, with
coefficients the function of the length scale L :

S[L](φ) ∼=
∑

i

fi(L) Θi(φ).

4.2.3. A (provisional) complete definition of effective QFT (combination of energy and
length scale viewpoints). Now we complete the definition by combining the use of energy
scale (for RGE) and the length scale (for locality).

A continuum QFT is a family of “effective actions” S[Λ] indexed by energy scales 0 <
Λ <∞ and satisfying the properties (1-3) above as well as the

• (4) [Locality] When S[Λ] is translated into the length scale effective action S[L]
then S[L] satisfies the asymptotic locality axiom.

5. The classification of effective Quantum Field Theories

Now that we have the notion of effective Quantum Field Theories (4.2.3), we can refor-
mulate the above mentioned theorem that classifies quantizations of a particular classical
theory, i.e., classical action S, The new version is a classification of all effective Quantum
Field Theories.

Let us fix a given space of fields E , i.e., a choice of (M, g,E), Denote by T (n) the space
of Effective Quantum Field Theories which are defined modulo ℏn+1.(51)

51This is just the version of the above notion of EQFT which uses the ring k[ℏ]/hn+1 instead of k[[ℏ]].
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Theorem. The “forgetting the ℏn+1 term” map

T (n+1) → T (n),

is a torsor for the abelian group of local action functionals Ol(E).(52)

Remark. We can identify the space of theories (unnaturally) with the space of ℏ-series in
local action functionals – but only if we choose a section for each torsor T (n+1) → T (n).
The standard way to do this is to choose a renormalization scheme.

5.0.4. Renormalization schemes. A renormalization scheme is a way to extract the sin-
gular part of certain functions of one variable:

(1) The first observation is that we are only interested in P⊆ C∞(0,∞) of period
functions.(53) Let P≤∞ ⊆ P be the subalgebra of functions which have limit at∞.

(2) A renormalization scheme is is a choice of a complementary subspace Σ.

5.0.5. The use of a renormalization scheme to parametrize effective QFTs.

Theorem. A choice of a renormalization scheme Σ provides a bijection between the space
T (∞) of all EQFTs and the space Iq of all local quantum interactions I (local functionals
with values in k[[ℏ]] such that the constant term is at least cubic).

Remark. We can state this in terms of the local Lagrangians L which give local action
functionals S =

∫
M
L. The space of theories is in bijection with k[[ℏ]]-valued local

Lagrangians modulo Lagrangians which are total derivatives.

6. YYY

Part 4. Chapter 2. Effective Theories, Scaled actions and Counterterms

Here we define EQFTs and prove that the quantization procedure is a torsor (term by
term) over local action functionals.

0.0.6. Data for a classical theory. The data for a classical theory are

• A Riemannian manifold (M, g).
• A vector bundle E whose sections form the space of fields E .
• A functional S ∈ O(E) which is a (classical) action functional, i.e.,

(1) 0 is a critical point with value zero and
(2) S is local.

52Torsor terminology here means a “torsor that has a section”, i.e., a trivial or “non-empty” torsor.
So, the claim is that there are no obstructions.

53P is related to variations of Hodge structures.
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Action functionals decompose into the quadratic term and higher terms S = S2 +I where

(1) In terms of the inner product 〈−,−〉 = 〈−,−〉M on E(M) = C∞(M) (given by
the metric g on M and a metric gE on E),

S2(φ) = −〈φ,Qφ〉
for a hermitian operator Q.

(2) I is a classical interaction functional, i.e., I lies in Ic, the subspace of local
functionals which are at least cubic.

In practice Q = D +m2 for the non-negative Laplacian D and some m > 0.

0.0.7. Data for a quantum theory. It consists of classical data (M, g,E) and a quantum
action S[−] which is a family of action functionals S[L] indexed by the scale L ∈ (0,∞)
and satisfying certain (subtle) properties.

(1) The quadratic part Q is independent of L:

S[Λ] = S2 + I[Λ] and S2(φ) = −〈φ,Qφ〉.
So, quantum action is a pair (Q, I[−]) of a hermitian operator Q and a quantum
interaction I[−]).

(2) S[−] or equivalently I[−], satisfies the RGE.
(3) S[−] or equivalently I[−], is asymptotically local as L→ 0.

The last property is subtle, it means that I[L] has an AE
∑∞

0 gi(L)Φi for Λ → 0, into
local functionals Φi ∈ Ol(E) rescaled by functions gi(L) of the scale L.

0.0.8. The perturbative (i.e., “deformation quantization”) framework. For a quantum the-
ory it means that the quantum interaction I[−] is a formal power series in the param-
eter ℏ or T = ℏ/i. More precisely, each I[L] lies in the space of quantum interactions
Iq = O+

l (E)[[ℏ]] which is the subspace of Ol(E)[[ℏ]] given by the requirement that the
zeroth term in the ℏ-expansion of I[L] is a classical interaction , i.e., I[L]|ℏ=0 ∈ Ic.
In the perturbative framework Costello explains the relation between classical and quan-
tum theories.

0.0.9. Renormalization group equation (RGE). It is the requirement that the actions at
different scales are compatible – for the observables that are common to two scales the
correlations are independent of the scale.

RGE is first stated in terms of the action S and then restated in terms of the interaction
I. More importantly, RGE is first stated in terms of the energy scale and then it is
reformulated in terms of the scale of the worldline length.
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The energy version says that for Λ′ < Λ, the Λ′-Lagrangian S[Λ′] is obtained by integrating
out in S[Λ] the fields on the scale [Λ′,Λ).

S[Λ′](φ) = ℏ log
[ ∫

ψ∈E[Λ′,Λ)

D(φ+ ψ) e
1
ℏ
S[Λ](φ+ψ)

]
, φ ∈ Ob≤Λ(M).

In terms of I[Λ] this means that

I[Λ′](φ) = ℏ log
[ ∫

ψ∈E[Λ′,Λ)

D(φ+ ψ) e
1
ℏ
(I[Λ](φ+ψ)−φQφ)

]
, φ ∈ Ob(M).

This RGE is invertible: it applies to arbitrary fields φ and it is valid for any Λ′,Λ

1. Intro

We start with the scalar field theories, i.e., E = OM on a compact manifold M . In the
last two sections we extend the results to the case when the fields are sections of a graded
vector bundle E and the manifold is not compact.

1.0.10. Scalar field theories. Again, we denote by Iq the space of quantum interactions.

Theorem. A. (a) The “forgetting the ℏn+1 term” map

T (n+1) → T (n)

is a trivial (i.e., “non-empty”) torsor for the abelian group of local action functionals
Ol(E).
(b) T (0) is canonically identified with the space O+

l (E)⊆Ol(E) of local functionals which
are at least cubic, i.e., the interacting terms.

Theorem. B. A choice of a renormalization scheme (RS) splits all torsors T (n+1) → T (n),
so it gives an isomorphism of spaces of theories T (∞) and the space Iq of quantum inter-
action functionals.

1.0.11. Topics.

• A version of RG flow.
• F-graphs and integrals.
• Heat kernel low length cutoff (“high energy cutoff”).
• The origin of infinities in weight integrals.
• F-graph weights are integrals over maps from the graph to M .
• Precise definition of EQFT and precise statements of the main theorems A and B.
• Renormalization schemes and how they extract the “singular part of weights”.
• Local counterterms via a RS.
• Proofs of theorems A and B.
• Extension to vector bundles.
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• Extension to noncompact manifolds.

2. RGE for interaction functionals

2.0.12. Local functionals. This is the property of action or interaction functionals in a
classical theory.

2.0.13. The data for a perturbative EQFT. (M, g) is a Riemannian manifold.

An EQFT on M will be given by by the family of actions

S[Λ] = S2 + I[Λ]

with

• S2(φ) = −〈φ,Qφ〉 where
Q = D +m2

for the non-negative Laplacian D and some m > 0.
• 〈−,−〉 = 〈−,−〉M is the inner product on E(M) = C∞(M) given by the metric g

on M .
• I[Λ] ∈ Iq.

2.0.14. RGE for S and I. For S is says that for Λ′ < Λ, the effective Λ′-Lagrangian S[Λ′]
is obtained from by integrating out in S[Λ] the fields on the scale [Λ′,Λ).

S[Λ′](φ) = ℏ log
[ ∫

ψ∈E[Λ′,Λ)

D(φ+ ψ) e
1
ℏ
S[Λ](φ+ψ)

]
, φ ∈ Ob≤Λ(M).

Lemma. (a) This can be restated in terms of I[Λ] as

I[Λ′](φ) = ℏ log
[ ∫

ψ∈E[Λ′,Λ)

D(φ+ ψ) e
1
ℏ
(I[Λ](φ+ψ)−φQφ)

]
, φ ∈ Ob(M).

(b) This RGE for I is invertible:

(1) The field φ is arbitrary.
(2) The equation is valid for any Λ′,Λ

2.0.15. Stochastic ℏ-normalization of measures on vector spaces.

2.0.16. RGE with one end at Λ = ∞. We think of S as S[∞] (all energies allowed),
therefore the RGE equation for Λ <∞ should say that

I[Λ](φ) = ℏ log
[ ∫

ψ∈E[Λ,∞)

D(φ+ ψ) e
1
ℏ
(I[Λ](φ+ψ)−φQφ)

]
, φ ∈ Ob(M).

However, this integral is ill-defined (for instance it is over an infinite dimensional vector
space).
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3. Feynman graphs

Our goal is to make precise sense of the RG flow, i.e., of the integral that integrates out
the fields which are outside of a given scale.

While this integral makes sense when one integrates out a finite dimensional space of
fields, we also need an infinite dimensional version in order to go from the classical action
S which is roughly S[Λ] for energy Λ =∞, to the finite scale action S[Λ]. (Actually, we
work with interactions I and I[Λ] rater then with actions S, S[Λ].)

3.0.17. Strategy: A. Operators WP . The first part of the strategy is to replace the actual
RGF integral with its formal (perturbative) expansion.(54) This expansion can be viewed
as an operator W which provides an action WP of propagators P ∈ S2E on the space Iq
of quantum interactions I.

The terms in the expansion are indexed by connected Feynman graphs. We start with
defining operators WP in terms of graphs. Then we notice that when E is finite di-
mensional this is really the value of the RGF-type integral and in general this is just a
formal expansion of a (formal) RGF integral. of , the inverse P of the operator Q (called
propagator) and the interaction I. We will actually

We use the class of stable Feynman graphs to produce an action of the space S2U of
propagators (on the vector space U), on the space of quantum interactions Iq(U) =
O+(U)[[ℏ]] on U .

3.0.18. Strategy: B. Double length cutoffs and RGF propagators Wε,L. The second step
deals with the problem that the propagator P that is natural here, the integral kernel of
Q−1, does not fit in the above construction ofWP . The problem is that it is a distributional
section of E⊠E on M2, so it does not lie in the space of propagators S2E⊆E⊗E which is
the space of smooth sections of E⊠E.

One replaces the above propagator P = Q−1 with its cutoffs which one can define

• In the energy picture: P[Λ′,λ) comes from the spectral decomposition of the operator
Q.
• In the length picture: Pε,L comes from the heat kernel formula P =

∫∞
0

dl Kl for

the propagator. The cutoff is simply Pε,L
def
=

∫ L

ε
dl Kl.

C. The meaning of the worldline picture. We saw that the length enters through
the formula for the propagator in terms of the heat kernel. This is really the formula∫∞
0

dl e−lQ = Q−1 in terms of integral kernels Kl, P for e−lQ, Q−1.

xxx

54One can hope that this is the asymptotic expansion of the functional integral.
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3.1. Operators WP on Iq.

3.1.1. Stable Feynman graphs. A Feynman graph γ is a graph with

• A subset Eγ of univalent vertices (called external vertices or tails).
• A coloring of vertices by genus g;Vγ → N.

γ is stable if vertices of genus 0 are at lest trivalent.

We denote by Vγ , Tγ , the vertices and terminal (external) vertices. By Eγ , Hγ the edges
and half-edges where half-edges are flags, i.e., incident pairs of an edge and an inner
vertex.

Let b1(γ) be the first Betti number of γ. The genus of the graph γ is

gγ = b1(γ) +
∑

v∈Vγ

gv.

Let kv be the valency of a vertex v and kγ = |Tγ| be the external valency of a graph γ.

We denote by sFG the moduli of stable Feynman graphs, this is the disjoint union of
B(Aut(γ)) over all isomorphism classes of graphs γ.

3.1.2. The weight wγP (I) ∈ O(|Tγ |)(U) of a graph γ with respect to (vector space
U ,propagator P ,interaction I). We consider a vector space U equipped with a propagator

P ∈ S2U
and an interaction I ∈ O+(U).

The idea is that any graph γ specifies an invariant of (U , P, I) defined as the contraction
of two tensors

wγP (I)
def
= 〈Pγ, Iγ〉 ∈ O(|Tγ |)(U).

Here,

• Pγ(a) ∈ U⊗Hγ is obtained by labeling edges and then tensoring at vertices. The
internal edges are labeled by the propagator P and the external ones by a variable
vector a ∈ U . (Notice that P ∈ U⊗U contributes one U per each internal half-edge
and a contributes one U per external half-edge.)
• Iγ(a) ∈ (U⊗Hγ )v is obtained by labeling inner vertices and then tensoring

along edges. Here, internal vertex v is labeled by Igv ,kv . (So the degree of Iγ is∑
v∈Vγ

deg(Igv,kv =
∑

v∈Vγ
kv, the sum of valencies of inner vertices, i.e., exactly

the number of half-edges.)

So, [wγP (I)](a)
def
= 〈Pγ(a), Iγ〉 is a homogeneous function wγP (I) of a ∈ U . Its degree is the

number of places where a appears in Pγ , i.e., the number of external edges.
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3.1.3. The action WP of a propagator P ∈ S2U on the space of quantum interactions
Iq = O+(U)[[ℏ]]. Here we use a propagator P ∈ S2U to act on the space of quantum
interactions. The result WP I has the free energy form, i.e., it is the sum over all
connected configurations, i.e., connected Feynman graphs(55)

WP I = W (P, I)
def
=

∫

γ∈ csFG

ℏgγ wγP (I).

The operator WP has expansion

WP =
∑

i,k≥0

ℏi WP,i.k

in the sense of WP,i.kI
def
= (WP I)ik. We denote by sFGik the submoduli of graphs γ with

genus gγ = i and external valency kγ = k, then

WP,i,kI =

∫

γ∈ csFGik

wγP (I).

Lemma. Series WP I converges.?

Proof. The reason is that we imposed stability condition on graphs!

yyy

3.1.4. Examples of Wik’s. Since Wi,k is an integral over csFGi,k, the point is to describe
the moduli csFGi,k,
csFG0,3. These are the connected graphs with genus zero and three external vertices.
gγ = 0 means that b1(γ) = 0 (γ is a tree) and each internal vertex v has genus 0. This
implies that internal vertices have valency ≥ 3, and since γ is a tree this means precisely
one internal vertex. So, csFG0,3 has one point – the D4 graph γ with Aut(γ) ∼= S3.

csFG0,4. Here the number of internal vertices is ≤ 1, and the moduli has two points, α
has one internal vertex which is 4-valent, i.e., 4 external spokes are protruding from it. β
has two internal vertices, they are joined by a single internal edge and both are 3-valent.

csFG1,1. If b1 = 0 then γ is a tree with one external vertex. An internal vertex v can
not have zero genus – since γ is a tree this would imply that there are at least 3 external
vertices. So, gγ = 1 implies that there is precisely one internal vertex and it has genus 1.
The picture (with the internal vertex v boxed and labeled by Igv ,kv = I1.1)

I1,1 ——–

If b1 = 1 then γ has one loop and internal vertices have zero genus. This allows one
internal vertex with valency 3 – two of the form the loop and the third is external.

55sFG is the free abelian semigroup on csFG, so
∫

sFG
= e

R

csFG .
The formula for new I has the free energy form since interaction I appears as the logarithm of the

amplitude eI .
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3.1.5. Interpretation of WP I as the free energy perturbative expansion of a functional
integral. This works when U is finite dimensional (unreasonable) and P is invertible (rea-
sonable).

Lemma. (a) If U is finite dimensional and P is invertible, for any a ∈ U (56)

(WP I)(a) = ℏ log
[ ∫

U

dx e
1
ℏ
[I(a+x)−P−1(x,x)

]
.

Proof. This is a Wick lemma computation.

Remark. The point is that the the operator WP generalizes the above functional integral
to infinite dimensional spaces where Wick lemma is not an equality but only an asymptotic
expansion.

3.1.6. Functional integral in terms of ∂P . ∂P is just the constant differential operator
given by P ∈ SU , for P =

∑
P ′⊗P ′′ this means ∂P =

∑
∂P ′∂P ′′.

Lemma.

WP I = ℏ log
[ ∫

U

dx eℏ∂P e
1
ℏ
I(a+x)

]
.

Proof. Just a repackaging of the preceding formula.

Corollary. W is an action of the vector space S2U on Iq :

WQ◦Wp = WP+Q.

3.1.7. The functional analysis for the infinite dimensional setting U = E. We work with
in the tensor category of nuclear Frechet spaces with completed projective tensor product.

(1) E is a nuclear Frechet space.

(2) O(E) def
=

∏
n≥0 O(n)(E), for

O(n)(E) = Sn(Ev) = [(E⊗n)v]Sn ,

where the dual is the continuous dual.
This is a (topological?) algebra.

(3) Problem. We need the propagator P to be in E⊗E .
(4) Then, everything works as above, with Pγ ∈ E⊗Hγ and Iγ ∈ (E⊗Hγ )v.

56Recall the normalization of the Haar measure on U .
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3.1.8. An explanation of singularities in QFT. The above scheme fails when the propaga-
tor P is chosen as the integral kernel for Q−1. Since P is a distributional section of E⊠E
on M2, it does not live in the correct tensor product E⊗E = smooth sections of E⊠E.

So, one can say that the infinities in QFT arise because Q−1 does not lie in the correct
tensor product.

Question. Is the problem that one should change the tensor structure? Is this accom-
plished by FAs?

4. Sharp and smooth cutoffs

The RGF will be given by operators WP for well chosen propagators P .

We consider the integral kernels

• P for Q−1 and
• Kl for e−lQ.

We can not quite use P as the propagator since it is not smooth.

A. RGF flow in the energy picture.

4.0.9. Laplacian eigenvectors. On a compactM , the Laplacian has isolated spectrum with
eigenvectors

Dei = λiei.

For Q = D+m2 this means Qei = (λi+m
2)ei, hence Q−1ei = (λi+m

2)−1ei, Therefore,
the integral kernel P for Q−1 takes form in L2(M2)

P =
∑ 1

λi +m2
ej⊗ej.

(Really, (
∑

cj ej⊗ej)ei =
∑

cj ej · 〈ej, ei〉 = cjej.)

4.0.10. Energy cutoffs of the propagator. The U -cutoff of P , for U⊆R>0 is

PU
def
=

∑

λj∈U

1

λi +m2
ej⊗ej

Lemma. If U⊆R>0 is bounded above, then PU is a smooth function on M2.
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4.0.11. RGF flow WP[Λ′,Λ)
. Now we can replace the formal expansion of a formal integral

(WP I)(a) = ℏ log
[ ∫

φ∈E

Dφ e 1
ℏ
[I(a+φ)−φQφ

]
,

with actual identities for Λ′ < Λ

(WP[Λ′,Λ)
I)(a) = ℏ log

[ ∫

φ∈E[Λ′,Λ)

e
1
ℏ
[I(a+φ)−φQφ

]
.

B. RGF flow in the wordline length picture. We will write the propagator P = Q−1

as an integral P =
∫∞
0

dl Kl of the heat kernel Kl for Q. This suggests the cutoffs of the

propagator Pε,L
def
=

∫ L

ε
dl Kl.

4.0.12. Heat kernel K for Q. The standard heat kernel is the integral kernel K0
l for e−lD,

the one for e−lQ = e−lm
2
e−lD is Kl = e−lm

2
K0
l . It is related to the integral kernelP for

Q−1 by

Lemma.
∫∞
0

dl Kl = P .

Proof.
∫∞
0

dl e−lQ = [ e
−lQ

−Q

]∞
0

= Q−1 = P .

4.0.13. The double length cutoffs Pε,L of the propagator P and the length-RGF Wε,L. For
0 ≤ ε < l ≤ ∞ define

Pε,L
def
=

∫ L

ε

dl Kl.

Terminology:

• ultraviolet = high energy = short length = ε.
• infrared = low energy = long length = L.

Lemma. For ε > 0and L ≤ ∞, Pε,L is a smooth section, so

Wε,L
def
= WPε,L

is well defined.

Proof. It follows from the formula

Pε,L =
∑ e−(λi+m

2)L − e−(λi+m
2)ε

λi +m2
ei⊗ei

that is gotten from the expansion of the heat kernel:

Pε,L =

∫ L

ε

dl Kl =

∫ L

ε

∑
e−l(λi+m

2) ei⊗ei =
∑ ( ∫ L

ε

e−l(λi+m
2)
)
ei⊗ei.

Remarks. Now we can define the length RGF as the family of operators Wε,L.
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4.0.14. Graphical view (Feynman graphs) on the RGF operators Wε,L.

4.0.15. Infinitesimal RGF.

5. Geometric interpretation of Feynman graphs

5.0.16. The role of Feynman graphs from the points of view of: (i) functional integrals,
and (ii) worldlines. point of view, the perturbative expansion

For functional integrals, Feynman graphs appear as an organizational tool – the index set
of the summands in the perturbative expansion.

However, from the worldline point of view, the perturbative expansion of a functional
integrals describes a new QFT whose fields are trajectories of systems of particles in M
and these are described as maps from Feynman graphs with proper (“internal”) time.
Here, Feynman graphs appear as topological types of trajectories, i.e., descriptions of
all possible interactions of a system of particles.

Remarks. (0) The worldline view appears here from the perturbative picture, as an as-
ymptotic picture of the QFT in the original functional integral.

(1) Notice that the String Theory is also an asymptotic theory! Moreover, it seems to
be the direct extension of the worldline view, obtained by upgrading Feynman graphs to
surfaces.

Question. Certain elements of the theory of surfaces appear in the Feynman graph for-
malism – the genus of a vertex and the notion of stable graphs which corresponds to stable
surfaces. Why?

5.0.17. The worldline view on propagators. The propagator P appears from several points
of view as

(1) Correlator of values of fields for the free theory given by Q

P (x, y) = 〈Ox,Oy〉 def
=

∫

φ∈E

Dφ e−
R

M φQφ φ(x)φ(y).

(2) The integral kernel for Q−1.
(3) An integral of the heat kernel for Q

P =

∫ ∞

0

dl Kl.

(4) An integral over the space P(x, y) over all paths in M from x to y. The paths we
consider have proper time(57), so P(x, y) = ⊔τ≥0 Pτ (x, y) where index τ means

57It is not related to the time in the spacetime M .
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paths that take time τ from x to y, i.e., f : [0, τ ]→M and f(0) = x, f(τ) = y.
So,

P =

∫ ∞

τ=0

dτ

∫

f∈Pτ (x,y)

DW(f) 1

where W is the Wiener measure on the space of paths.
(5) The partition function of the QFT where the space of fields is P(x, y) and the

action is the kinetic energy

E(f) =

∫ τ

0

dt |df |2.

This is of course an intuitive description and we write it as an intuitive functional
integral

P =

∫

f∈P(x,y)

e−E(f).

Also, the heat kernel Kl appears as

• (i) The integral kernel for e−lQ.
• (ii) The probability for the particle f : [0, τ ]→M to be at x when t = 0 and at y

when t = τ .

Here (4) and (ii) are the worldline views on the propagator P and on Kl.

5.0.18. Some relations between different approaches to P . The philosophical interpreta-
tions (1) and (5) are of no immediate importance. The precise meaning of (5) is the
formula (4), since (4) is obtained by making sense of the functional integral (5) through
the Wiener measure.

(3) is equivalent to (2) when we remember (i) (Kl is the integral kernel for e−lQ).

The worldline view (4) on P is obtained from (3) by using the worldline view (ii) on the
heat kernel Kl.

(4) can also be obtained from (1) by the Wick lemma calculation of the formal expansion
of the functional integral (1).

5.1. The worldline view on the correlation functions 〈Ox1 , ...,Oxn〉. For S = I −
φQφ, we define formally correlation function as a function integral

E(x1, ..., xn)formal
def
= 〈Ox1 , ...,Oxn〉formal

def
=

∫

φ∈E

e
1
ℏ
S(φ)φ(x1)· · ·φ(xn).

We define the actual correlator E(x1, ..., xn) as the perturbative expansion of the formal
correlator E(x1, ..., xn)formal.

For γ ∈ sFG we denote by Met(γ) the space of “metrics” on γ, meaning all possible lists
of lengths of edges g : Eγ → R≥0. Let MsFG =

∫
γ∈sFG

Metγ be the moduli of metrized

Feynman graphs.
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A metrized graph (γ, g) can be viewed as consisting of edges e parametrized by the
corresponding intervals [0, g(e)]. Then a “γ-path” f : γ → M is a system of maps fe :

[0.g(e)]→M and we define its energy as the sum E(f) =
∑

e E(fe) =
∑

e

∫ g(γ)

0
dt |dfe|2

of energies of its parts fe.

Lemma.

E(x1, ..., xn) =

∫

γ∈sFG

ℏ−χ(γ)

∫

Met(γ)

∫

f :γ→M

e−E(f).

Proof. Wick lemma.

Remark. We see again that the passage from the (usually formal, i.e., symbolic) func-
tional integral to its asymptotic expansion is

• Achieved by applying (formally) the Wick lemma.
• Constitutes a passage to the worldline view on the subject.

5.1.1. The double length-cutoff of correlators. These are obtained by replacing the moduli
of metrized Feynman graphs MsFG by the submoduli MsFGε,L of graphs each of whose
legs e has length in [ε, L].

5.2. Definition of correlators from the effective interaction I[−].

5.2.1. Correlators 〈O1, .., On〉 and RGE. Here, we are interested in correlators for just
one purpose – the formulation of the RGE. The point is that RGE is just a restatement
of the requirement that for any observables Oi ∈ O(ε,L], i.e., on the scale (ε, L], the
correlator 〈O1, .., On〉ε′,L′ calculated at the scale (ε′, L′) is independent of the choice of the
scale (ε′, L′) (as long as we use a wider scale, i.e., (ε′, L′)⊇(ε, L)).

More precisely, in the scaled (effective) QFT formalism, an observable O is not uniform
at all scales, rather it has incarnations Oε,L on any scale (ε, L). We are most interested
in the case

O[L]
def
= O0,L.

Now, the scaled RGE requirement is that 〈(O1)ε,L, .., (On)ε,L〉ε,L is independent of the scale
(ε, L).

5.2.2. For observables in EQFT see [CG]. Observables do not really figure in Costello’s
book, instead they are treated in the [CG]-paper. This treatment is the theory of factor-
ization algebras. It includes

• Two notions of scaled observables: strict and homotopy observables.
The difference is that the strict ones satisfy RGE equation strictly and the

homotopy ones satisfy RGE on the homotopy level.
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• Both form factorization algebras which are quantizations of Poisson factorization
algebras of classical observables. However, the homotopy observables form a for-
mally better object since they have the full structure that one wants from the
quantization of the algebra of classical observables – the structure of BD factor-
ization algebra.

5.2.3. Correlators of point observables 〈O1, .., On〉 form a single correlator distribution En

on Mn. The idea is that for functions fi on M

E(f1, ..., fn) =

∫

x•∈Mn

〈(Ox1 , ..., Oxn〉 · f1(x1)· · ·fn(xn).

It contains the information of all correlators of observables supported at points (Here Di

are differential operators.)

〈OD1x1 , ..., ODnxn〉.

5.2.4. The graphs for correlators.

Remark. The scale L appears in two ways in the construction of correlators, in the scaled
interaction I[L] and the scaled propagator P [L].

Lemma. RGE for I[L]’s is equivalent to the independence of the correlators En
L,I[L] ∈

Dn(M) on the parameter L.

5.2.5. The meaning of the worldline view on correlators. The integral over MsFGε,L
means that we consider the evolutions f of a system of particles which interact according
to I[L] but are constrained to travel for the proper (internal) time at least L between any
two interactions.

6. Effective QFT: the definition

6.0.6. The scope of the theory. For a moment we consider the massive scalar theories on
a compact M , so E = C∞(M) and Q = D +m2.

6.0.7. An effective QFT (EQFT) is a family of quantum interactions I[L] ∈ Iq, indexed
by the length scale L ∈ (0,∞), such that

(1) Renormalization group equation (RGE)

Wε,LI[ε] = I[L].
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(2) For any i, k ∈ N, the component Iik[L] ∈ Sk(Ev) has an asymptotic expansion for
small L

Ii,k[L]
AE
=

∞∑

r=0

gr(L) Φr,

into local functionals Φr ∈ Ol(E) of degree k, and with coefficients functions
gr ∈ C∞(R>0

L) of the scale L.(58)

6.0.8. Quantization theorems. Notice that the definition of an effective action makes sense
when one relates the ring k[[ℏ]] with k[[ℏ]]/ℏn+1 = k[ℏ]/ℏn+1. For 0 ≤ n ≤ ∞ let T (n) be
the space of effective Quantum Field theories for k[[ℏ]]/ℏn+1, i.e., defined modulo ℏn+1.

Theorem. AB. Fix S2.
(59)

(a) The “forgetting the ℏn+1 term” map

T (n+1) → T (n)

is a trivial (i.e., “non-empty”) torsor for the abelian group of local action functionals
Ol(E).
(b) T (0) is canonically identified with the space Ic = O+

l (E) of classical interactions.

(c) A choice of a renormalization scheme (RS) Σ splits all torsors T (n+1) → T (n), so it
gives an isomorphism (the effective σ-quantization isomorphism) of spaces of theories and
of quantum interactions:

EQΣ : Iq
∼=−→ T (∞)

which is compatible with (b).

Remark. The isomorphism EQΣ is unnatural in the sense that it requires a choice of Σ.

Question. Do we know any natural choice of Σ?

58This is an asymptotic expansion (AE) in the sense that there exists a nondecreasing sequence dr →
+∞ such that for each field φ ∈ E

lim
ε→0

Iik[L](φ)−∑
ρ=0r gρ(L)Φρ(φ)

Ldr

= 0.

So, this is an asymptotic expansion in the topological vector space

Sk(Ev) = [(E⊗k)v]Sk

for the weak topology given by the fields φ ∈ E .
59At this stage the book considers E = C∞(M) and S2 = φQφ for Q = D + m2.
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6.0.9. About the proof. (b) is clear by definition of T (0).

We first prove the “less natural” version (c). Then (a) follows “easily” since (c) contains
the existence part of the claim (a).

For (c) we need to pass from a quantum interaction I to an effective quantum interaction
IΣ[−]. Since I is an attempt to have an action adequate for all (length) scales, it should
fit with I[−] as a version of I[0]. So, we would like to transition between the two by

I[L] = WL,0I = lim
ε→0

Wε,LI and I = lim
ε→0

I(ε).

The limits do not exist, rather, in the formula I[L] = limε→0 Wε,LI we need to replace
I with its Σ-regularized version I − ICT,Σ(ε). The counterterm ICT,Σ is defined uniquely
by Σ and the requirement that for each L the limit in the following definition exists:

I[L]
def
= lim

ε→0
Wε,LI − IC(ε).

In the converse direction, again I is a renormalized version of the limit limε→0 I(ε).

Question. Is T (∞) naturally a torsor over T (0) = Ic? (The group in question would be
the Kontsevich motivic group??)

Remark. The heart of the construction is the handling of the singularities that arise in
Wε,L, i.e., in the graph weights wγε,L, as ε→ 0, i.e., as we allow arbitrarily high energies.
This extraction of singularities is achieved through the science of counterterms.

7. Extracting the singular part of the weights of geometric interpretation of
Feynman graphs

7.0.10. The algebra P of period functions. One says that a complex number α is a period
if it has a presentation

α =

∫

γ

ω

as an integral of a form ω of top degree, over a middle dimensional cycle γ, with all data
defined over Q :

• complex algebraic variety X with a normal crossing divisor D,
• a form ω ∈ Ωdim(X)(X) and
• a relative homology class

γ ∈ Hdim(X)[X(C), D(C); Q].
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Remark. [Kontsevich-Zagier] “all” constants in mathematics should be periods.

One says that a function α on (0,∞) is a period function if it has a presentation as a
family of periods

α(ε) =

∫

γ

ωε

with the data defined over R :

• a complex algebraic variety X with a normal crossing divisor D,
• A Zariski open subset U⊆A1 which is defined over R and its real points
U(R)]⊆A1(R) = R contain R>0.
• a smooth map of a pair (X,D) into U , such that (X(C), D(C)) is locally trivial

in the C∞-category.
• a relative form ω ∈ Ωdim(X)(X/U) and
• a relative homology class in the fiber at 1 ∈ U

γ ∈ Hdim(X)[X1(C), D1(C); R].

Remark. The choice of U was needed, i.e., U = A1 (does not suffice) so that we could
require that (X,D) is “nice” over U . The condition that (X(C), D(C)) is locally trivial in
the C∞-category is needed just to be able to transport the class γ from the special fiber
at 1 to any fiber. Notice that while γε may be multivalued for general ε ∈ U (monodromy
of periods), there is a canonical choice for ε > 0 (the extension along R>0).

7.0.11. The singularities of weights wγεLI of a Feynman graph γ. Our control of these
singularities is the heart of the construction of the counterterms. It is contained in the
following theorem which provides a double asymptotic expansion for the weights wγεLI (first
in ε and then in L). This is the one “hard” ingredient of the construction of the effective
actions. The proof is based on a parallel understanding of the asymptotic expansion of
heat kernels in the Berline-Getzler-Vergne theory.

For any choice of γ and I, (wγεLI)(φ) depends on the field φ and ε, L ∈ R>0. We will view
it as a function of ε with values in a nuclear space

wγε,−I ∈ O(E , C∞(R>0
L )) ∼= O(E)⊗ C∞(R>0

L ).

Theorem. For any I ∈ Iq the integral wγε,LI has an AE for small ε in the the nuclear space

O(E)⊗ C∞(R>0
L ),

wγε,LI
AE
=

∞∑

0

gi(L) Φi(L,−)

such that

(1) the coefficient functions are period functions: gi ∈ P; with only finite order poles
at 0;
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(2) each Φi(L,−) ∈ O(E)⊗ C∞(R>0
L ) has an AE in the nuclear space of local func-

tionals into local functionals, for small L,

Φi(L,−) =
∞∑

j=0

fij(L) Φij

such that the coefficient functions are smooth fik ∈ C∞(R>0
L ) (and Φij ∈ Ol(E)).

7.0.12. Renormalization schemes. Let P = P(0,∞) be the subring of C∞(0,∞) generated
by all period functions.

A renormalization scheme is a choice of a complementary subspace Σ = P<0 to the
subalgebra P≥0⊆P. The projections

Σ = P<0
SingΣ←−−− P RegΣ−−−→ P≥0

are called the Σ-singular part and the Σ-regular part.

Lemma. These constructions extend to functions which have asymptotic expansions for
small ε

W (ε)
AE
=

∞∑

0

gi(ε)Φ

such that the coefficient functions gi are periods.

Proof. First we define

SingΣW
def
= lim

r→∞
SingΣ(

r∑

0

giΦ)
def
= lim

r→∞

r∑

0

SingΣ(gi)Φ

and then RegΣ(I) is defined as 1− SingΣ. This is based on

7.0.13. Sublemma. If W has asymptotic expansions for small ε

W (ε)
AE
=

∞∑

0

gi(ε)Φ

then for i >> 0 the coefficients gi have zero limit at ε = 0. (What is needed is i > 0 and
di−1 > 0.)

Proof. The limit of

−gi(ε)
εdi−1

=
W (ε)−∑i

j=0 gj(ε)−W (ε)−∑i−1
j=0 gj(ε)

εdi−1

= εdi−di−1
W (ε)−∑i

j=0 gj(ε)

εdi
−
W (ε)−∑i−1

j=0 gj(ε)

εdi−1

is zero. So, a soon as di−1 > 0 we have limε→0 gi(ε) = 0.
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Remark. The choices of a complement to a subspace U⊆V form a torsor for Hom(V/U, U)
since any choice of a complement Σ gives a parametrization of complements by

Hom(V/U, U) ∼= Hom(Σ, U) ∋ A7→ΓA
def
= (id+ A)Σ.

So, renormalization schemes form a torsor for Hom(P/P≤0,P≤0).

Remark. Physicists use a number of renormalization schemes which do not fall under this
formalism (they do not use the space of periods), for instance the “minimal subtraction
scheme”. These schemes are mechanisms for extending moderately singular functions
across singularity as distributions. Though the notion of a RS (a characterization of
admissible ways of extending across singularities) is not formalized in physics, there is an
understanding of which mechanisms are meaningful. (The approach via periods is due to
Kontsevich?)

7.0.14. The Σ-regular part RegΣ(I) of I. We make a choice of a RS Σ. Since in the

asymptotic expansion wγεLI
AE
=

∑∞
0 gi(ε)Φi, the coefficient functions gi are periods, we

have a decomposition of wγεLI into its singular and regular parts with respect to Σ, say

SingΣ[wγεLI] =
n∑

0

SingΣ(gi)(ε)Φi

for sufficiently large n.

Let us summarize the properties of this construction.

Proposition. Let Σ be a renormalization scheme. For any I ∈ Iq the Σ-singular part of
the integral wγε,LI is finite sum

SingΣ[wγεLI] =
∞∑

0

fi(ε)Φi(L,−).

Here fi ∈ Σ = P<0, while each Φi(L,−) ∈ Ol(E , C∞(R>0
L )) has an AE for small L, in the

nuclear space of local functionals

Φi(L,−) =
∞∑

j=0

fij(L) Φij

such that the coefficient functions are smooth fik ∈ C∞(R>0
L ) (and Φij ∈ Ol(E)).

Corollary. The Σ-regular part RegΣ(wγεLI) has a limit for ε → 0 in the nuclear space
O(E , C∞(R>0

L )) = O(E)⊗ C∞(R>0
L ).

Proof. ??????
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8. Construction of local counterterms

We choose a renormalization scheme Σ = P<0.

Theorem. For each interaction I there exists a unique “local counterterm”

IC : R>0
ε −→ Iq⊆ Ol(E)[[ℏ]]

such that

(1) for each L > 0 the limit

IΣ[L]
def
= lim

ε→0
Wε,L(I − IC)

exists in Iq.
(2) In the expansion IC =

∑
i.k ℏiICik the term ICik (ε) lies in the algebraic tensor

product Ol(E)⊗alg Σ.

Remark. Traditionally one constructs counterterms in terms of Feynman diagrams.
Costello has a found a formal proof but he also states the Feynman diagrams proof for
the additional intuition that it provides.

8.0.15. Construction via Feynman diagrams. Recall that the operator W = Wε,L is a
formal series W =

∑
ik ℏiWik with

Wik =

∫

γ∈sFGik

wγεL

where sFGik = Γik is the moduli of stable Feynman graphs of genus i and external
valency k.

The case i = 0. Here gγ = 0, i.e., γ is a tree. We choose the counterterm ICG0k to be
zero because

• for trees the weight wγεL has no singularity at ε = 0 and
• the sum over trees converges,

8.1. A direct construction of counterterms. One attempts to correct the fact that
the limit

lim
ε→0

WεLII

does not exist, i.e., that the function of ε WεLI is singular at ε = 0. A choice of
the renormalization scheme Σ gives us a quantitative incarnation SingΣ(WεLI) of this
singularity. We will see that the main thing is that this measure of singularity SingΣ, is
additive and idempotent.
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The naive attempt to correct is by using as the counterterm IC
εL

the object SingΣ(WεLI)
that causes the problem. One could expect that a problem in this strategy is a discrep-
ancy between ε and L. However it actually works when we filter Iq by N2, the problem
disappears because Gr(WεL) is identity.

Question. Does the strategy work when we make interval (ε, L) short, i.e., on the level
of differential equations?

8.1.1. Properties of the RGF operators WεL.

WP I = ℏ log
[
eℏ∂P e

1
ℏ
I
]
.

8.1.2. The graded version of the flow WεL is identity. For Θ⊆N2 denote

IΘ
def
=

∑
(i,k)∈Θ ℏiIik and WΘI

def
=

∑
(i,k)∈Θ ℏiWikI

def
=

∑
(i,k)∈Θ ℏi(WI)ik.

Lemma. Let α = (i, k) ∈ N2.

(a) WP,α(I) = WP,α(I≤α).

(b)

WP,α(I) = WP,α(I<α) + Iα).

(c) W≤α is an automorphism of the Iqα-torsor Iq≤α։Iq<α, i.e., for I ∈ Iq≤α and J ∈ Iqα
WP,≤α(I + Jα) = WP,≤αI + J.

Sublemma. If Ir,s appears in the tensor Iγ attached to some γ ∈ csFG then (gγ, kγ) ≥
(r, s).

The equality happens for precisely one graph γ, the “(r, s)-star” graph ⋆r,s which consists
of one internal vertex v. s edges from v to external vertices and the genus of v is r.

Proof of the sublemma. Clearly, r ≤ i since r = gv ≤ gγ = i. So we only need to consider
the case r = i and check that s ≤ k and that s = k iff γ = ⋆r,s.

r = i implies gv = gγ and this tells us that

• b1(γ) = 0, i.e., γ is a tree and
• inner vertices u 6= v have genus 0, hence valency ku is ≥ 3.

Now we will observe that the external valency of γ is

dγ = kv +
∑

u∈iVγ−{v}

ku − 2

where iV are the internal vertices. This implies the remaining claims of the sublemma.
The formula is clear when presented as a picture but the long if we describe it in words.
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For this we start with the subgraph γ̃ of γ that consists of the vertex v and the edges
from v. Since γ is a tree, subgraph γ̃ has a “star” shape and γ is obtained from γ̃ by
attaching a tree Te to the end of each edge e in γ̃.

To get the summand kv observe that the least that each tree Te contributes is 1 and this
happens iff Te is a point, i.e., if it contains no internal vertices of γ. Then each internal
vertex u that lies in Te adds ku − 2.

Proof of the lemma. We have

WP,αI =

∫

csFGα

wγP I and wγP I = 〈Pγ , Iγ〉

where tensor Iγ is obtained by putting at each internal vertex v the tensor Igv ,kv .

(a) follows from the sublemma.

(b) The difference WP,α(I) − WP,α(I<α) is given by the terms wγP I where (gγ, kκ) = α
and Iγ features Iα. The sublemma says that there is just one such graph γ = ⋆α. For
this graph, wγP I = Iγ since there are no internal edges, i.e., no contractions with the
propagator P . Also, Iγ = Iα since γ has just one internal vertex and this is where Iα is
positioned.

(c) follows from (a) and (b),

WP,≤α(I + J) = WP,≤α(I + J)<α + (I + J)α = WP,≤α(I<α) + Iα + J = WP,≤α(I) + J.

8.1.3. Inductive construction of counterterms. By induction we assume that for β < α
we have counterterms

IC(ε)β ∈ Ol(E) ⊗ Σ

such that for

IC(ε)<α =
∑

(r,s)<α

ℏrIC(ε)(r,s)

and any L > 0, the function WecL<α[I − IC(ε)<α] of ε > 0 is regular at ε = 0.(60)

Now we can define

IC(ε)α
def
= SingΣ[lim

ε→0
W (ε, L)≤α[I − IC(ε)<α] ∈ Ol(E)⊗algΣ

and the ≤ α counterterm

IC(ε)≤α
def
= IC(ε)<α + ℏiIC(ε)α.

According to the lemma 8.1.2.c

W (ε, L)≤α[I − IC(ε)≤α] = W (ε, L)≤α[I − IC(ε)<α]− IC(ε)α.

60When α = (i, k) with k = 0 < i then α has no direct predecessor so one needs to make a trivial
“limit” observation.
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This expression has a limit at ε = 0 since SingΣ is additive and idempotent:

SingΣ[W (ε, L)≤α[I − IC(ε)<α] = IC(ε)α = SingΣ[IC(ε)α].

Now IC(ε) = limα→∞ IC(ε)≤α has the required properties.

8.1.4. Independence of L.

8.1.5. Locality of IC. This follows from the independence of L.

8.1.6. Uniqueness. is also clear, i.e., the above inductive procedure is in each step the
only possible one.

8.1.7. Remark. If limε→0 WεLI exists then the counterterm IC(ε) vanishes.

Proof. For α = (i, k), the counterterm ICα is of the form SingΣ[W (ε, L)α(I − IC<α)]. If we

inductively know that IC<α = 0 then

SingΣ[W (ε, L)α(I − IC<α)] = SingΣ(W (ε, L)αI) = 0

since the component W (ε, L)αI of W (ε, L)I has limit at ε = 0.

9. Proof of the quantization theorem

The construction I 7→ I[L] is easily seen to satisfy the conditions for an EQFT.

9.1. From a scaled quantum interaction I[−] to a single quantum interaction
I. We construct inductively Iα for α = (i, k). Assume that for (r, s) < α we have Ir,s

such that I<α
def
=

∑
(r,s)<α ℏiIr,s reconstructs the the < α-truncated I[L] by the the < α-

truncated flow W0,L :

W (0, L)<α I<α = I[L]<α.

The induction step is the following lemma:

Lemma. (a) The following quantity is local and independent of L

Iα
def
= Iα[L] − W (0, L)α I<α.

(b) I≤α
def
= I<α + ℏiIα satisfies

W (0, L)≤α I≤α = I[L]≤α.

9.2. The canonical description of T (∞) (i.e., without a choice of a renormaliza-
tion scheme).
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Lemma. (a) The tangent space at I[L]0 ∈ T (0), is

TI[L]0T (0) ∼= Ol(E).

10. ZZZ


