Math 545  Linear transformations and the geometry of surfaces
A homework assignment

Let S be a smooth surface in R3 given by the equation f(z,y,2) = 0, where smooth-
ness means that the gradient vector

_(of Of of
vi= (a—a—ya—)

does not vanish at any point of S. Note that V[ is a (non-linear in general) function
from R3 to R3. The tangent plane TpS to S at a point P € S is the two dimensional
subspace of R? orthogonal to the gradient vector V f(P). Note that we define the tangent
plane TpS as a plane through the origin, which need not pass through P.

1. Let S be the unit sphere given by 2 + y +22-1=0and P = (0, Yo, 20) & point
of S. Show that the tangent plane T’ S is the plane in R? orthogonal to the vector
(0, Yo, 20)-

2. Let S be the ellipsoid (z/a)? + (y/b)* + (z/c)* = 3, where a, b, ¢ are fixed positive
numbers. Show that the point P = (a, b, ¢) belongs to S and the tangent plane of
S at P is the plane cut out by the linear equation z/a 4+ y/b+ z/c = 0.

3. A parametrization of an open subset of S consists of an open subset U of R?
together with a one-to-one map X : U — R3, with the following properties.

(a) The equality f(X(u,v)) = 0 holds, for all (u,v) € U. This means that X
maps U into S.

(b) Write X (u,v) = (z(u,v),y(u,v), z(u,v)), expressing the components of X as
functions of the coordinates u and v on U. Then the entries of the the 3 x 2

matrix
9z Ou
U gv
dX(u,v):=| 72
R
Ju  Ov
are functions of v and v, and we require dX (u,v) to have rank 2, for every

point (u,v) in the open set U.

Let X, be the first column of dX (u,v) and X, the second column. Show that

B = {Xu(uo, v0o), Xy(uo,vo)} (1)

is a basis of TpS at the point P := X (ug, vg), for every parametrization X : U — S
and for every point (ug,vg) of U.

4. Given two surfases S and S and a “nice” map G : S — § one can define a linear
transformation dGp : TpS — Tgp S called the differential of G at P. We will
not define it, but rather state how to compute dGp in terms of parametrizations
of S and S. Note that the definition of dGp does not depend on the choice of
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parametrizations (see, for example, section 2.4 of the book Differential Geometry
of Curves and Surfaces, by M. P. DoCarmo, Prentice Hall 1976.)

Assume given a pair of parametrizations X : U — S and X : U — S, such that the
image G(X (U)) is contained in the image X (U). Then given a point (ug, vy) in U,
there exists a unique point (i, ) in U, such that X (@i, 7o) = G(X (u,v)), since
X is assumed to be one-to-one. Thus, there exists a unique function g : U — U ,
such that X (g(u,v)) = G(X (u,v)), for all (u,v) € U.

S C, S
X 1 1
U S, U.

X

Fix a point (ug,v) in U and set (o, 09) = g(ug,vo). Set P := X (up,vy) and
P := X(iig, 7). Then dGp is defined (ie., G is “nice” at P) if the partials of g
are all defined at (ug, vg). Express the components of g as functions of u and v via
the notation g(u,v) = (u(u,v),v(u,v)) and form the 2 x 2 matrix

o o
ou  Ov
dg =
ov  ov
ou  Ov

Then § := {X,, X,}, evaluated at (ug,vp), is a basis of TpS, 8= {)N(a,)?ﬁ}, eval-
uated at (4@, 0p), is a basis of T3S, and dg(ug, vg) is equal to the matrix [[ale]]ﬁﬂ~

of the linear transformation dGp : TpS — Tﬁg with respect to these two bases.
More explicitly,

ou ou
0X i\ ~ v\ ~
dGp(X,) = o (%) Xa+ (%> X5

The differential dGp can be defined independently of the choice of parametriza-
tions, and the above equations say that once parametrizations are chosen, dGp is
compatible with the chain rule.

. Let S be the unit sphere in R3, given by the equation 2 +y2 + 22 = 1. Let S be
a surface in R3, given by the equation f(x,y,z) = 0. The Gauss map G : S — S
of S is given by .

G(P) |Vf(P)|Vf(P)'
G sends a point P of S to the point on the unit sphere corresponding to a unit
normal vector to S at P. Observe that the tangent plane T (p)S to the unit sphere

is equal to TpS, by part 1 above. Hence,

de . TPS — TPS
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is a linear transformation from 7pS to itself! We can thus define the determinant
det(dGp) (Definition (18.7) on page 149 in our text). The determinant det(dGp)
is called the Gaussian curvature of S at P.

Let S be the surface given by z% + (y/2)? + (2/3)> — 3 = 0. Let U be the open
subset of R? given by 2?2 + (y/2)? < 3. Let X : U — S be the parametrization of
the upper half of the ellipsoid S, given by

X(u,v) = (u,v,?)\/?) —u? — (0/2)2> :

Prove the equalities

1 0
Xu(u,v) = 0 and X, (u,v) = 1 :
—9x/z —9y/4z

in Tz,,S, where (z,y,2) = X(u,v).

. Keep the notation of part 5. Choose the parametrization )Z'(ﬂ, 0) = (il, 0,V1 —1u® — 172)

of S, defined on the open unit disk U in R2. Set P = (1,2,3). Then P =
G(P) = 1(6,3,2). Show that the matrix [[ale]]ﬁﬁ~ of dGp, with respect to the

basis 3 = {X,(1,2), X,(1,2)} of TpS and § := {X; (£,2), X5(%,2)} of T~S is

equal to

3 34 =5

73 < —32 22 ) @)
Hint: Let 7 : S — U be the projection given by 7(x,y,2) = (z,y). Show first that

the unique function g : U — U, satisfying G( (u,v)) = X(g(u,v)), is given in our
case by g(u,v) = 7(G(X (u, v)))

u E
\/3+8u2 +(5/16)02 \ 4"

. Keep the notation of part 6. Show that the bases 8 and 3 of TpS are the same
(this is a coincidence). Conclude that the matrix [[dGp]]g of dGp with respect to
the basis § := {X,(1,2), X,(1,2)} of TpS is equal to the matrix in equation (2).
Conclude also that the Gaussian curvature of S at P is 1%.

. Let W be the open subset u? + (v/3)* < 3 of R? and Y : W — R? the function
Y(u,v) = (u,2/3 —u?— (v/3)2 ).

Then Y is another parametrization of an open subset of the ellipsoid S in part
5and P = (1,2,3) = Y(1,3) is in the image of Y. Define the basis 3y =
{Y.(1,3),Y,(1,3)} of TpS as in equation (1).

Use your answer in part 7 and Theorem (13.6)’ page 104 in the text in order to
show that the matrix [[dGp]|g, of the differential dGp : TpS — TpS of the Gauss
map, with respect to the new basis 35 of TS, is equal to

el = (%) 3



The moral of this story: The subspace TpS of R?, the linear transformation
dGp : TpS — TpS, and the Gaussian curvature det(dGp), do not depend on the
choice of parametrization of S. In contrast, different parametrizations give rize to
different 2 x 2 matrices of dGp, such as (2), (3), or yet a third 2 x 2 matrix that
would arise if we choose a parametrization of the ellipsoid S via polar coordinates.



