Math 421 Midterm $2 \quad$ Spring 2014

Solve 5 of the following 6 problems. Please do not grade problem \qquad .

1. (20 points) Compute the integral $\int_{C} f(z) d z$, where $f(x+i y)=x^{2}+i y$ and C is the straight line segment from 0 to $1+i$.
2. (20 points) Let C be the square with vertices at the points $\pm 5 \pm 5 i$ (oriented counterclockwise). Compute $\int_{C} \frac{z^{4} d z}{(z-1)^{2}(z-i)}$
3. (20 points) Let C be the circle of radius 2 centered at the origin (traversed counterclockwise). Compute the integral $\int_{C} \frac{e^{3 z}}{(z-1)^{k}} d z$, for all integers k (positive, zero, or negative). Justify your answer!
4. (20 points) Determine whether the following statements are true or false. Justify your answers!
a) Let C be a closed contour, which does not pass through the origin. Then $\int_{C} \frac{d z}{z^{2}}=0$.
b) If $f(z)$ is an entire function, C is the unit circle traversed counterclockwise, and $\left|z_{0}\right|<1$, then $\int_{C} \frac{f^{\prime}(z)}{z-z_{0}} d z=\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z$.
c) Let α and β be arbitrary complex numbers. For any path C from α to β we have $\int_{C} \bar{z} d z=\left(\bar{\beta}^{2}-\bar{\alpha}^{2}\right) / 2$.
5. (20 points) Let C_{1} be the contour given by the parametrization $z(t)=(1+t) e^{2 \pi i t}$, $0 \leq t \leq 3$. Let C_{2} be the line segment from 1 to 4 parametrized by $z(t)=1+t$, $0 \leq t \leq 3$. Compute the difference $\int_{C_{1}} \frac{d z}{z+2}-\int_{C_{2}} \frac{d z}{z+2}$. Justify your answer!
6. (20 points) Let u be a harmonic function defined (and having partials of all order) on the whole of \mathbb{R}^{2}. Assume that the first partials of u satisfy the inequality

$$
\left(u_{x}\right)^{2}+\left(u_{y}\right)^{2} \leq 7
$$

Prove that u must be a linear function, i.e., $u(x, y)=a x+b y+c$, for some constant real numbers a, b, and c.
Hint: Consider the function $f(x+i y)=u_{x}(x, y)-i u_{y}(x, y)$.

