Math $421 \quad$ Final Exam Spring 2012

Show all your work and justify al your answers!

1. (12 points) Determine the number of zeroes, counting multiplicities, of the equation $z^{7}-4 z^{3}+z-1=0$ in the annulus $\{z: 1<|z|<2\}$. State carefully any theorem you use.
2. (14 points)
(a) Let k and m be two non-negative integers and $\phi(z)$ a function, which is analytic at z_{0}, with $\phi\left(z_{0}\right) \neq 0$. Set $g(z)=\left(z-z_{0}\right)^{m} \phi(z)$. Calculate the residue $\operatorname{Res}_{z=z_{0}}\left(z^{k} \frac{g^{\prime}(z)}{g(z)}\right)$. Justify your answer!
(b) Let f be an analytic function on a simply connected open set U and C a positively oriented simple closed contour in U, not passing through any zero of f. Suppose that f has n zeroes z_{1}, \ldots, z_{n} in the domain bounded by C, and let m_{j} denote the multiplicity of z_{j} as a zero of f. Prove the following equality for every non-negative integer k.

$$
\int_{C} \frac{z^{k} f^{\prime}(z)}{f(z)} d z=2 \pi i \sum_{j=1}^{n} m_{j} z_{j}^{k}
$$

3. (12 points) Let C be the unit circle oriented counterclockwise. Prove the following equalities.

$$
\int_{-\pi}^{\pi} \frac{d \theta}{1+\sin ^{2}(\theta)}=\int_{C} \frac{4 z i}{z^{4}-6 z^{2}+1} d z=\sqrt{2} \pi
$$

4. (12 points) Prove the following equality for all positive real numbers a and b.

$$
\int_{-\infty}^{\infty} \frac{\cos (a x)}{\left(x^{2}+b^{2}\right)^{2}} d x=\frac{\pi}{2 b^{3}}(1+a b) e^{-a b}
$$

5. (12 points)
(a) Find the Laurent series of $e^{1 / z}$ valid in $\{z:|z|>0\}$.
(b) Let C be the unit circle, oriented counterclockwise. Evaluate the following integral.

$$
\frac{1}{2 \pi i} \int_{C}\left(\frac{1}{z^{2}}+z+z^{3}\right) e^{1 / z} d z
$$

6. (14 points) Let $f(z)=\frac{3}{(z-1)(z+2)}$.
(a) Find the Taylor series, centered at the origin, of the function f. Where is $f(z)$ equal to the sum of its Taylor series? Justify your answer.
(b) Find the Laurent series representing f in the annulus $\{z: 1<|z|<2\}$.
(c) Find the Laurent series representing f in the domain $\{z:|z|>2\}$.
7. (12 points) Let S_{r} be the upper half of the circle of radius r centered at 0 , and parametrized by $z(\theta)=r e^{i \theta}, 0 \leq \theta \leq \pi$.
(a) Let g be a function analytic in some open disk centered at 0 . Prove that $\lim _{r \rightarrow 0} \int_{S_{r}} g(z) d z=0$.
(b) Let $f(z)$ be a meromorphic function with a simple pole at 0 . Set $B:=$ $\operatorname{Res}_{z=0}(f)$. Prove that $\lim _{r \rightarrow 0} \int_{S_{r}} f(z) d z=\pi i B$. Hint: Consider the function $g(z)=f(z)-\frac{B}{z}$.
8. (12 points) Let C be the circle of radius 2 centered at the origin and oriented counterclockwise. Evaluate the integral $\frac{1}{2 \pi i} \int_{C} \frac{\log (z+3)}{(z-1)^{n+1}} d z$, for all integers $n \geq$ 0 .
