Show all your work and justify al your answers!

- 1. (12 points) Determine the number of zeroes, counting multiplicities, of the equation $z^7 4z^3 + z 1 = 0$ in the annulus $\{z : 1 < |z| < 2\}$. State carefully any theorem you use.
- 2. (14 points)
 - (a) Let k and m be two non-negative integers and $\phi(z)$ a function, which is analytic at z_0 , with $\phi(z_0) \neq 0$. Set $g(z) = (z - z_0)^m \phi(z)$. Calculate the residue $\operatorname{Res}_{z=z_0}\left(z^k \frac{g'(z)}{g(z)}\right)$. Justify your answer!
 - (b) Let f be an analytic function on a simply connected open set U and C a positively oriented simple closed contour in U, not passing through any zero of f. Suppose that f has n zeroes z_1, \ldots, z_n in the domain bounded by C, and let m_j denote the multiplicity of z_j as a zero of f. Prove the following equality for every non-negative integer k.

$$\int_C \frac{z^k f'(z)}{f(z)} dz = 2\pi i \sum_{j=1}^n m_j z_j^k.$$

3. (12 points) Let C be the unit circle oriented counterclockwise. Prove the following equalities.

$$\int_{-\pi}^{\pi} \frac{d\theta}{1 + \sin^2(\theta)} = \int_{C} \frac{4zi}{z^4 - 6z^2 + 1} dz = \sqrt{2}\pi$$

4. (12 points) Prove the following equality for all positive real numbers a and b.

$$\int_{-\infty}^{\infty} \frac{\cos(ax)}{(x^2 + b^2)^2} dx = \frac{\pi}{2b^3} (1 + ab)e^{-ab}.$$

- 5. (12 points)
 - (a) Find the Laurent series of $e^{1/z}$ valid in $\{z : |z| > 0\}$.
 - (b) Let C be the unit circle, oriented counterclockwise. Evaluate the following integral.

$$\frac{1}{2\pi i} \int_C \left(\frac{1}{z^2} + z + z^3\right) e^{1/z} dz.$$

- 6. (14 points) Let $f(z) = \frac{3}{(z-1)(z+2)}$.
 - (a) Find the Taylor series, centered at the origin, of the function f. Where is f(z) equal to the sum of its Taylor series? Justify your answer.
 - (b) Find the Laurent series representing f in the annulus $\{z : 1 < |z| < 2\}$.
 - (c) Find the Laurent series representing f in the domain $\{z : |z| > 2\}$.

- 7. (12 points) Let S_r be the upper half of the circle of radius r centered at 0, and parametrized by $z(\theta) = re^{i\theta}, 0 \le \theta \le \pi$.
 - (a) Let g be a function analytic in some open disk centered at 0. Prove that $\lim_{r\to 0} \int_{S_r} g(z) dz = 0.$
 - (b) Let f(z) be a meromorphic function with a simple pole at 0. Set $B := \operatorname{Res}_{z=0}(f)$. Prove that $\lim_{r\to 0} \int_{S_r} f(z)dz = \pi i B$. Hint: Consider the function $g(z) = f(z) \frac{B}{z}$.
- 8. (12 points) Let C be the circle of radius 2 centered at the origin and oriented counterclockwise. Evaluate the integral $\frac{1}{2\pi i} \int_C \frac{Log(z+3)}{(z-1)^{n+1}} dz$, for all integers $n \ge 0$.