Name: My Solution
Show all your work and justify al your answers!

1. (12 points) Determine the number of zeroes, counting multiplicities, of the equation $z^{7}-4 z^{3}+z-1=0$ in the annulus $\{z: 1<|z|<2\}$. State carefully any theorem you use.
Rouche's Theorem: Let \& be a simple closed contour and $b, g$ analytic along $q$ and throughout the dominin $I$ interion to $C$. Assume that

$$
|f(z)-g(2)|<|f(2)|
$$

for all $z \in C$. Then f and $g$ hove the same number of zeroes in $U$, when counted with multiplicities. $F$ orthermore, neither $b$, mon $g$, have zeroes in $c$,
set $g(z)=z^{7}-4 z^{3}+2-1$.
zeroes of $g$ in the unit disc:
set $f(z)=-4 z 3$. Then $f$ had 3 zeroes in the unit clish。 If $|z|=1$ then $|f(z)-g(z)|=\left|z^{j}+z-1\right| \leqslant|z|^{7}+|z|+1 \leqslant 3<4=|f(z)|$. $121=1$
Thus $g$ has 3 roots in the open unit dish and none along the unit circle.
zeroes of $g$ in the dus卷 $\{z:|z|<2\}$,
set $f(z)=z^{7}$. If $|z|=2$, then

$$
|f(z)-g(z)|=\left|4 z^{3}-z+1\right| \leqslant 4|z|^{3}+|z|+1=32+2+1=35<128
$$

Thus $g$ has 7 zeroes, counted with multiplicitig. "il? in the disir of rodus 2 .
Conclusion: $g$ has $7-3=4$ zeroes in the annulus.
2. (14 points)
(a) Let $k$ and $m$ be two non-negative integers and $\phi(z)$ a function, which is analytic at $z_{0}$, with $\phi\left(z_{0}\right) \neq 0$. Set $g(z)=\left(z-z_{0}\right)^{m} \phi(z)$. Calculate the residue $\operatorname{Res}_{z=z_{0}}\left(z^{k} \frac{g^{\prime}(z)}{g(z)}\right)$.Justify your answer!

$$
z^{r} \cdot \frac{g^{\prime}(z)}{g(z)}=z^{r}\left(\frac{m}{z-z_{0}}+\frac{\phi^{\prime}(z)}{\phi(z)}\right)
$$

Res $z_{0}\left(z^{k} \frac{\phi^{\prime}(z)}{\phi(z)}\right)=0$, since the function is analytre at $z_{0}$,
If $z_{0}=0$ and $k>0$, then $z k \cdot \frac{m}{z-z_{0}}$ is analyser (removable sing), so $\operatorname{Res} z_{0}\left(z r \cdot \frac{m}{z-z_{0}}\right)=0$ 。
If $z_{0} \neq 0$, then $z_{0}$ is a simple pole of $z^{r} \frac{m}{z-z_{0}}$ and $\operatorname{Res}_{z_{0}}\left(z^{r} \frac{m}{z-z_{0}}\right)^{z_{0}}=\tau_{0}$ is ample pole of $\frac{z-z_{0}}{R_{e z_{2}}\left(z^{r} \frac{\phi^{\prime}(z)}{\phi(z)}\right)=z_{0}^{k} \cdot m}$
(b) Let $f$ be an analytic function on a simply connected open set $U$ and $C$ a positively oriented simple closed contour in $U$, not passing through any zero of $f$. Suppose that $f$ has $n$ zeroes $z_{1}, \ldots, z_{n}$ in the domain bounded by $C$, and let $m_{j}$ denote the multiplicity of $z_{j}$ as a zero of $f$. Prove the following equality for every non-negative integer $k$.

$$
\int_{C} \frac{z^{k} f^{\prime}(z)}{f(z)} d z=2 \pi i \sum_{j=1}^{n} m_{j} z_{j}^{k}
$$

Set $\phi_{i}(z) i=f(z) /\left(z-z_{i}\right)^{m_{i}}$
Then $\phi_{i}$ has a removable singuloity' at $z_{i}$ and $\phi_{i}\left(z_{i}\right) \neq 0$, and $f(z)=\left(z-z_{i}\right)^{m_{i}} \phi_{i}(z)$. By part a, we have $\operatorname{Red}_{z_{i}}\left(\frac{z^{r} f^{\prime}(z)}{f(z)}\right)=z_{i}^{r} m_{i}$

Curchy's Residue Formula yields

$$
\begin{aligned}
\int \frac{z^{r} f^{\prime}(z)}{f(z)} d z & =2 \pi i \sum_{j=1}^{m} R_{e z}\left(\frac{4}{}\left(\frac{z_{j} r f^{\prime}(z)}{f(z)}\right)=\right. \\
& =2 \pi \pi_{2}^{i} \sum_{j=1}^{m} z_{j}^{r} m_{j}
\end{aligned}
$$

3. (12 points) Let $C$ be the unit circle oriented counterclockwise. Prove the following

$$
\begin{aligned}
& \text { equalities. } \\
& \int_{-\pi}^{\pi} \frac{d \theta}{1+\sin ^{2}(\theta)}=\int_{C} \frac{4 z i}{z^{4}-6 z^{2}+1} d z=\sqrt{2} \pi . \\
& \int_{-\pi}^{\pi} \frac{1}{1+\sin ^{2}(\theta)} d \theta=
\end{aligned}
$$

$$
\begin{aligned}
& \int_{C} \frac{i z}{-z^{2}+\frac{\left(z^{2}-1\right)^{2}}{4}} d z=\int_{C}^{4 i z} \frac{4 z^{4}-6 z^{2}+1}{z^{2}} d z=i I
\end{aligned}
$$

Set $\omega=z^{2}$, Roots of $\omega^{2}-6 w+1=0$ are

$$
w_{1,2}=+3 \pm \sqrt{9-1}=3 \pm \sqrt{8}
$$

$z$ cross of $z^{H}-c z^{2}+1$ in i the open unit dist:
$z_{1,2}= \pm \sqrt{3-\sqrt{8}}$. Each is a simple pole,

$$
\begin{aligned}
& \operatorname{Req}_{z=2} \frac{4 i z}{z^{H}-6 z^{2}+1}=\left.\frac{4 i z}{4 z^{3}-12 z}\right|_{z=z_{j}}=\left.i \frac{1}{z^{2}-3}\right|_{z j}=i \frac{1}{z_{j}^{2}-3}= \\
&=i \frac{1}{(3-\sqrt{8})-3}=-\frac{i}{2 \sqrt{2}}, \quad j=1,2,
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \text { J } I=2 \pi i\left(\operatorname{Req}_{z=z_{1}}\left(\frac{4 i z}{z^{4}-6 z^{2}+1}\right)+R_{e 2}(=)\right)= \\
& =2 \pi i\left(-\frac{\alpha i}{2 \sqrt{2}}\right)=\frac{2 \pi}{\sqrt{2}}=\sqrt{2} \pi
\end{aligned}
$$

4. (12 points) Prove the following equality for all positive real numbers $a$ and $b$.

$$
\begin{aligned}
& I=\int_{-\infty}^{\infty} \frac{\cos (a x)}{\left(x^{2}+b^{2}\right)^{2}} d x=\frac{\pi}{2 b^{3}}(1+a b) e^{-a b} . \\
& " \operatorname{Re} \frac{e^{i a x}}{\left(x^{2}+b^{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& z_{1}=i b, z_{2}=-i b \text {, Not in the upper half place } \\
& \operatorname{Red}_{z_{1}=i b} \frac{e^{i a z}}{\left(z^{2}+b^{2}\right)^{2}}=\left.\frac{j}{\partial z}\right|_{z=i b}\left(\frac{e^{i a z}}{(z+i b)^{2}}\right)=\frac{i a e^{i a z}(z+i b)^{2}-t^{i a z}(z-a b)}{(z+i b)^{4} 3} \\
& (z-i b)^{2}(z+i b)^{2} \\
& I_{2=i b} \\
& =e^{-a b}\left(\frac{\widetilde{i a(2 i b)}-2}{-i 8 b^{3}}\right)=\frac{1}{4} e^{-a b}\left(\frac{1+a b}{i b^{3}}\right) \\
& \text { SQ: } I=\operatorname{Re}\left\{\frac{x \pi x}{\mu d^{2} b^{3}} e^{-a b}(1+a b)\right\}=\frac{\pi}{2 b^{3}} e^{-a b}(1+a b)
\end{aligned}
$$

5. (12 points)
(a) Find the Laurent series of $e^{1 / z}$ valid in $\{z:|z|>0\}$.

$$
\begin{aligned}
& e^{z}=1+z+\frac{z^{2}}{2}+\cdots+\frac{z^{n}}{n!}+\cdots \\
& e^{1 / 2}=1+\frac{1}{2}+\frac{1}{2}\left(\frac{1}{2}\right)^{2}+\cdots
\end{aligned}
$$

(b) Let $C$ be the unit circle, oriented counterclockwise. Evaluate the following integral.

$$
I:=\frac{1}{2 \pi i} \int_{C} \underbrace{\left(\frac{1}{z^{2}}+z+z^{3}\right) e^{1 / z} d z . . . . . .}
$$

The function $f(z)$ is andlyte $b(z)$ in $\{z ;|z|>0\}$ $I \stackrel{2 p o}{=}$ $\uparrow \operatorname{Res}_{z=0} f(z)=$ co of of $\frac{1}{2}$ in the Lourentsereis Caubly-Residue Formula

$$
=(\operatorname{cocf} \text { of } z)+\left(\operatorname{cosff} \text { of } \frac{1}{z^{2}}\right)+\left(\operatorname{coff} \text { of } \frac{1}{z^{4}}\right)
$$

in the Laurent series of $e^{1 / 2}$

$$
0+\frac{1}{2}+\frac{1}{4!}=\frac{12+1}{24}=\frac{13}{24}
$$

$$
\text { 6. }(14 \text { points }) \text { Let } f(z)=\frac{3}{(z-1)(z+2)}=\frac{A^{\prime \prime}}{z-1}+\frac{B^{\prime \prime}}{z+2}=\frac{A(z+z)+B(z-1)}{()()}
$$

(a) Find the Taylor series, centered at the origin, of the function $f$. Where is $f(z)$ equal to the sum of its Taylor series? Justify your answer.

$$
\begin{aligned}
& \frac{1}{z-1}=\frac{-1}{1-z}=-\left(1+z+z^{2}+\cdots+z^{n}\right) \\
& \frac{-1}{z+2}=\left(\frac{-1}{2}\right) \frac{1}{1-\left(-\frac{z}{2}\right)}=\left(-\frac{1}{2}\right) \sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n} z^{n}=\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n+1} z^{n} \\
& f(z)=\sum_{n=0}^{\infty}\left[-1+\left(-\frac{1}{2}\right)^{n+1}\right] z^{n}
\end{aligned}
$$

In $\{z:|z|<1\}$, by Taylor's Theorem, since This is the largest even disk centered at 0, on which of is analyte, LAt points with $|z|=1$, the series diverges by the $M$-term tent!
(b) Find the Laurent series representing $f$ in the annulus $\{z: 1<|z|<2\}$.

$$
\begin{aligned}
& \frac{1}{z-1}=\left(\frac{1}{z}\right) \frac{1}{1-\left(\frac{1}{z}\right)}=\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{z^{n}}=\sum_{n=1}^{\infty} \frac{1}{z^{n}} \\
& f(z)=\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n+1} z^{n}+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-1}{z+2}=\left(-\frac{1}{z}\right) \frac{1}{1+\frac{\alpha}{z}}=-\frac{1}{z} \sum_{m=0}^{\infty}(-2)^{n} \frac{1}{z^{N}}=\sum_{m=0}^{\infty}-(-\alpha)^{n} \frac{1}{z^{m+1}}=\sum_{k=1}^{\infty}-(-\alpha)^{n-1} \frac{1}{z^{k}} \\
& f(z)=\sum_{m=1}^{\infty}\left[1-(-\alpha)^{m-1}\right] \frac{1}{z^{m}}
\end{aligned}
$$

7. (12 points) Let $S_{r}$ be the upper half of the circle of radius $r$ centered at 0 , and parametrized by $z(\theta)=r e^{i \theta}, 0 \leq \theta \leq \pi$.
(a) Let $g$ be a function analytic in some open disk centered at 0 . Prove that $\lim _{r \rightarrow 0} \int_{S_{r}} g(z) d z=0$.
Let $R>0$ such that $g$ is analytic $\bar{D}_{R} \approx\{z ;|z| \leqslant R\}$. Let $M$ be $\max \{|g(z)|:|z| \leqslant R\}$. $M$ exists and is finite, since $g$ is contenuous on $\bar{D}_{R}$ and ${\overline{D_{R}}}$ is closed and bounded, Then $\left|S_{S_{\Omega}} g(z) d z\right| \leqslant M \operatorname{legth}\left(S_{\Omega}\right)=M \cdot 2 \pi \Omega \xrightarrow{\Omega \rightarrow 0} 0_{0}$
(b) Let $f(z)$ be a meromorphic function with a simple pole at 0 . Set $B:=$ $\operatorname{Res}_{z=0}(f)$. Prove that $\lim _{r \rightarrow 0} \int_{S_{r}} f(z) d z=\pi i B$. Hint: Consider the function $g(z)=f(z)-\frac{B}{z}$.
The principal part of $f$ at $O$ is $\frac{B}{2}$, by def of residue and the fort that $\rho$ is a siple pole, Hence, the principal port of $f(z)-\frac{B}{2}$ is $z$ ers $f(z)-\frac{B}{2}$. Hence, $f(2)-\frac{B}{2}$ extends to a $f$ unction $g(z)$
 analytic at 0 .

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \int_{S_{r}} f(z) d z=\lim _{r \rightarrow 0} \int_{S_{r}}\left(g(z)+\frac{B}{2}\right) d z= \\
= & \lim _{r \rightarrow 0} S_{S_{r}} g(z) d z+\lim _{r \rightarrow 0} \int_{S_{n}} \frac{B}{2} d z=\operatorname{Part}(a) \\
= & 0+\lim _{r \rightarrow 0} \prod_{0}^{\pi} \frac{B}{\pi e^{i \theta}} \cdot r i e^{i \theta} d \theta=\int_{0}^{\pi} B i d \theta=\pi i B .
\end{aligned}
$$

8. (12 points) Let $C$ be the circle of radius 2 centered at the origin and oriented counterclockwise. Evaluate the integral $\frac{1}{2 \pi i} \int_{C} \frac{\log (z+3)}{(z-1)^{n+1}} d z$, for all integers $n \geq$
0 .

$$
I_{W}
$$

$G(2)=\log (2+3)$ is analytic in

$$
\mathbb{C} \backslash\{2=x+0 i: \quad x \leqslant-3\}
$$

Hence, it is analytic at well points of $C$ and at all points interior to $C$

Cauchy's Formula for higher derivatives apply and yield

$$
f(n)=\frac{n!}{2 \pi i} \int_{c} \frac{f(z)}{(z-1)^{n+1}} d z=n!I
$$

So $I_{n}=\frac{1}{n!} b^{(n)}(1)$.

$$
\begin{aligned}
& \text { So } \begin{array}{l}
I_{0}=f(1)=\log (4)=\ln (4) \text {. For } n \geqslant 1 \\
f^{\prime}(2)=\frac{1}{2+3}=(2+3)^{-1} \\
b^{\prime \prime}(2)=(-1)(2+3)^{-2} \\
f^{(n)}(2)=(-1)^{n+1}(m-1)!(2+3)^{-n} \\
f^{(n)}(1)=\frac{(-1)^{n+1}(m-1)!}{4^{n}} \quad 8 \quad \frac{(-1)^{n+1}}{n 4^{n}} \\
I_{n}=\frac{(m-n)}{4^{n}}
\end{array}, m \geqslant 1 .
\end{aligned}
$$

