Solve problem 1 and only 7 out of problems 2 to 9. If you solve all 9, then problem 9 will not be graded. Please fill in: Please do not grade Problem number _____. Show all your work. Credit will **not** be given for an answer without a justification. Calculators may **not** be used in this exam.

1. (16 points) Given that the Taylor series of tan(z), centered at 0, has the form

$$\tan(z) = z + \frac{1}{3}z^3 + \frac{2}{15}z^5 + \dots + \tan(z)$$
 (1)

- a) Evaluate the fifth derivative $\tan^{(5)}(0)$ with as little calculations as possible.
- b) Find the principal part at z = 0 of the function $f(z) = \frac{(1+z)\tan(z)}{z^5}$
- c) Find all the singularities of f(z) (given in part b) in the disk $D = \{|z| < 4\}$ and determine their type (isolated, removable, pole of what order, essential).
- d) Find the residue at each isolated singularity in D.
- 2. (12 points) a) Compute $\sin(\pi + i \ln(3))$. Simplify your answer as much as possible.
 - b) Prove that all solutions of the equation cos(z) = 0 are real and find all the solutions.
- 3. (12 points) Compute the integral $\int_C \frac{z^5}{1-z^3} dz$, where C is the circle of radius 2, centered at 0, and traversed counterclockwise.
- 4. (12 points) a) Find the Taylor series of the function $f(z) = \frac{2z+1}{z^2+z-2} = \frac{1}{z-1} + \frac{1}{z+2}$ centered at 0 and determine its radius of convergence. Justify your answer.
 - b) Find the Laurent series of the function f(z), given in part a), valid in the annulus 1 < |z| < 2.
- 5. (12 points) a) Use the definition of contour integrals to prove the equality

$$\int_{C} \sin(\bar{z})dz = \int_{C} \sin(1/z)dz, \tag{2}$$

where C is the circle $\{z : |z| = 1\}$, traversed counterclockwise. Caution: The argument of the integrand, on the left hand side, is the complex conjugate \bar{z} of z.

- b) Find the Laurent series of $\sin(1/z)$ centered at zero and classify the type of singularity at z=0.
- c) Use the equality (2) in order to evaluate the integral $\int_C \sin(\bar{z})dz$.
- 6. (12 points) Evaluate the integral

$$\int_0^{2\pi} \frac{d\theta}{2 + \cos(\theta)}.$$

7. (12 points) Let S_R be the upper-semi-circle of radius R > 1, given by the parametrization $z = Re^{i\theta}$, $0 \le \theta \le \pi$. Prove the equality

$$\lim_{R \to \infty} \int_{S_R} \frac{z^2 dz}{1 + z^4} = 0.$$

Hint: Find first an upper bound for the integral.

- 8. (12 points) Determine whether the following statements are true or false. Justify your answers!
 - a) Let C be the circle $\{z : |z| = 1\}$, oriented counterclockwise. Assume that f(z) is analytic in the punctured disk 0 < |z| < 2, and the integrals $\int_C z^n f(z) dz$ vanish, for all integers $n \ge 0$. Then 0 is a removable singularity of f.
 - b) There exists a function F(z), analytic in the punctured unit disk $\{z: 0 < |z| < 1\}$, whose derivative f(z) := F'(z) satisfies $Res_{z=0}(f(z)) = 1$.
 - c) If f is a non-constant entire function and $|f(z)| \le 2$, for every z on the unit circle $\{z : |z| = 1\}$, then f must map the unit disk $\{z : |z| < 1\}$ into the disk $\{z : |z| < 2\}$.
 - d) There exists an entire function, whose real part is e^{x+y} .
- 9. (12 points) Evaluate the improper integral

$$\int_0^\infty \frac{x^2}{x^4 + 1} dx.$$