Name: My sol'M

1. (18 points) Compute the integral $\int_{C} \bar{z} d z$, where C is the triangle with vertices at the points 0,1 , and i, (traversed counterclockwise). Caution: The integrand is the complex conjugate \bar{z} of z.

$$
\begin{array}{ll}
c_{1}: & z(t)=t, \quad 0<t<1 \\
c_{2}: & z(t)=1+t(i-1)=1-t+t i \\
c_{3}: & z(t)=i+t(-i)=(1-t) i
\end{array}
$$

$$
\begin{aligned}
& \int_{c_{1}} \bar{z} d z=\int_{0}^{1} t d t=\left[\frac{t^{2}}{2}\right]_{0}^{1}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\left(t^{2}-t\right)+i(t)\right]_{0}^{1}=i \\
& \int_{C_{3}} \bar{z} d z=\int_{0}^{t}(1-t) i \cdot \underbrace{\frac{d z}{\gamma t}}_{-i} d t=\int_{0}^{\int_{0}^{2}} \underbrace{(1-t)}_{t-1} d t=\left[-t+\frac{t^{2}}{2}\right]_{0}^{1}=-\frac{1}{2} \\
& \int_{C} \bar{z} d z=\int_{C_{1}+c_{2}+C_{3}} \overline{2} d z=\frac{1}{2}+i+\left(-\frac{1}{2}\right)=i
\end{aligned}
$$

Method 2: See problem 7 page 163 in section 49. The integral $=\alpha i$ (Area of the triangle).
2. (18 points) Let C be the ellipse cut out by the equation $(x / 3)^{2}+(y / 5)^{2}=1$, oriented counterclockwise. Compute $\int_{C} \frac{z^{3} d z}{(z-i)\left(z^{2}+1\right)}$.

$$
\begin{aligned}
& I=\int_{C} \frac{z^{3}}{(z-i)(z-i)(z+i)} d z= \\
& (z-i)^{2} \\
& =\int_{c_{1}+c_{2}} \frac{z^{3}}{(z-i)^{2}(z+i)} d z= \\
& =\int_{C_{1}} \frac{z^{3} / z+i}{(z-i)^{2}} d z+\int_{C_{2}} \frac{z^{3} /(z-i)^{2}}{z+i} d z \\
& \underbrace{C_{2}}_{11} \underbrace{}_{\text {Formula }} \text { Cauchy's Integral } \\
& (2 \pi i) \cdot \frac{\partial}{\gamma z}\left(\frac{z^{3}}{z+i}\right) \\
& \left(\frac{3 z^{2}(z+i)-z^{3}(1)}{(z+i)^{2}}\right)_{z=i} \\
& \underbrace{(2 \pi i) \cdot \underbrace{2}_{i-i}}_{\frac{+\pi}{2}} \\
& \text { Answer: } \\
& I=-2 \pi
\end{aligned}
$$

3. (16 points) Suppose that $f(z)$ is entire and $|f(z)| \geq 1 / 2$, for all z in the complex plane. Prove that f is a constant function. Hint: The strategy is similar to the proof of the Fundamental Theorem of Algebra, but the actual proof is much simpler.
Liouiville's Theorem:
Let f be an entire function, such that \mid 'b|: is bounded from ABOVE by some positive real number M (ii. $|f(z)| \leqslant M$ for all z in \mathbb{C}). Then f is a constant function.
Solution of the problem: (Compare with Problem i section 54 page 178)。
set $g(z):=\frac{1}{f(z)}$. Then $g(z)$ is entire, since $f(z)$ can never be zero, by assumption. Furthermore, $|g(z)|=\frac{1}{|f(z)|} \leqslant 2$ is bounded. Hence, by Liouivillés Theorem, $g(z)=c$, for some constant c. Thus, $f(z)=\frac{1}{c}$ is constant as well. I
\qquad
4. (16 points) Let C be the unit circle parametrized by $z(\theta)=e^{i \theta}, 0 \leq \theta \leq 2 \pi$.
(a) Show that for all integers $n, \int_{C}\left(e^{\left(z^{n}\right)} / z\right) d z=2 \pi i$.

$$
\int_{C} \frac{e^{\left(z^{n}\right)}}{z} d z \underset{\substack{\text { Cauchy's }}}{=}\left(2 \pi i^{\prime}\right) \cdot \underbrace{e^{\left(o^{n}\right)}}_{1}=2 \pi i
$$

cauchy's
Integral Formula with
$p(z)=e^{\left(z^{m}\right)}$
$z_{0}=0$ (analytr on tho closed unit disk)
(b) Derive the integration formula $\int_{0}^{2 \pi} e^{\cos (n \theta)} \cos (\sin (n \theta)) d \theta=2 \pi$, for every in-

$$
\begin{aligned}
& \stackrel{r}{2 \pi i=} \int_{C}^{\left(z^{M}\right)} \frac{e^{2}}{2} d z=\int_{0}^{2 \pi} \frac{e^{\left(\left(e^{i \theta}\right)^{m}\right)}}{e^{i \theta}} \cdot i e^{i \theta} d \theta= \\
& =\int_{0}^{2 \pi} e^{\left(e^{i m \theta}\right)} \cdot i d \theta=i \int_{0}^{2 \pi} e^{[\cos (M \theta)+i \sin (m \theta)]} d \theta= \\
& =i \int_{0}^{2 \pi} e^{\cos (m \theta)} \cdot\left[\cos (\sin (m \theta))+i \sin ^{2}(\sin (m \theta))\right] d \theta
\end{aligned}
$$

Equating the imaginary port of both sides, we get the desired equation,
\qquad
5. (16 points) Let the domain D be the complex plane minus the non-negative part of the x-axis. Let $\log (z)$ be the branch of the logarithm function with argument in the interval $(0,2 \pi)$, so that $\log (z)$ is analytic in D. Set $f(z):=e^{(1 / 2) \log (z)}$. Note that $f(z)$ is a branch of the multi-valued function \sqrt{z}.
(a) Find a single valued anti-derivative $F(z)$ of $f(z)$ in D. Express your answer in terms of the above branch of $\log (z)$ and avoid using multi-valued rational powers of z. Check that your answer is indeed an anti-derivative, by explicitly

$$
\begin{aligned}
& F(z)=\frac{2}{3} e^{3 / 2 \log (z)}=\frac{2}{3} e^{1 / 2 \log (2)} \cdot z \text {. Note } F(z)=\frac{2}{3} e^{\left[3 \frac{\ln |z|}{2}+\frac{\operatorname{ling}(z)}{2}\right]} \\
& \partial_{z}=\frac{2}{3} \cdot \frac{3}{2} e^{3 / 2 \log (2)} \cdot \frac{1}{2}=e^{3 / 2 \log (2)}, \frac{1}{2}=e^{1 / 2 \log (2)} \cdot \tau \cdot \frac{1}{2}=
\end{aligned}
$$

$$
=e^{1 / 2 \log (z)}
$$

(b) Let C be the contour $z(\theta)=e^{i \theta}, \pi / 2 \leq \theta \leq 3 \pi / 2$. Prove the equality

$$
\begin{aligned}
& \int_{C} f(z) d z=F\left(e^{i \frac{3 \pi}{2}}\right)-F\left(e^{i \frac{\pi}{2}}\right)= \\
& =\frac{\int_{0} f(z) d z}{}=\frac{2 \pi i}{4} \\
& =\frac{2 \pi}{3} . \\
& =\frac{2}{3}\left[e^{0+\frac{3 / 2}{2}\left(\frac{3 \pi}{2}\right)}-e^{0+\frac{3 / 2}{2}\left(\frac{\pi}{2}\right)}\right]= \\
& =\frac{2}{3}\left[e^{\frac{\pi i / 4}{4}}-e^{\frac{3 \pi i}{4}}\right]= \\
& \left.\frac{1}{\sqrt{2}}(1+i)-\frac{1}{\sqrt{2}}(-1+i)\right]=\frac{2}{3 \sqrt{2}} \cdot 2=\frac{2 \sqrt{2}}{3}
\end{aligned}
$$

$$
\frac{1}{\sqrt{2}}(-1+i)=e^{3 \pi / 4}
$$

\qquad

$$
f(z)=2^{5}+32+7
$$

page 6
6. (16 points) Let C be a circle of radius $7 / 2$ centered at the origin oriented counterclockwise. Set $g(n):=\int_{C} \frac{z^{5}+3 z+7}{(z-n)^{3}} d z$. Compute $g(n)$ for all integers n. Justify your answer!!!

If $m>4$ ar $m<-4$, then $\frac{z^{5}+3 z+7}{(z-m)^{3}}$ is analytic on the

contour C and in the dish bounded by it, 50 $g(m)=\int_{C} \frac{z^{5}+3 z+z}{(z-m)^{3}} d z=0$ by cauchy-Goursat,

If $-3 \leqslant n \leqslant 3$, then by cauchy's Integral Formula

$$
f^{\prime \prime}(n)=\frac{21}{2 \pi i} \cdot \int_{C} \frac{f(z)}{(z-n)^{3}} d z=\frac{1}{\pi i} g(n)
$$

So $g(m)=\pi i \cdot \frac{\gamma^{2}}{\gamma z^{2}}\left(z^{5}+3 z+7\right)=20 \pi i m^{3}$

