
Math 421 Midterm 2 Solution Fall 2002

Solve the first 5 problems and only one out of problems 6 and 7.

1. (20 points)

Compute the contour integral
∫

C

ez̄dz,

where C is the boundary of the rectangle with vertices at the points 0, 2, 2 + i,
and i, oriented counterclockwise. Caution: the exponent of the integrand is the

complex conjugate z̄ of z.

Answer: Label the edges of the rectangle by C1 (bottom), C2 (right), C3 (top),
and C4 (left). The edges are parametrized as follows:

C1 : z(t) = 2t, 0 ≤ t ≤ 1, so ez(t)dz = e2t · 2dt,

C2 : z(t) = 2 + it, 0 ≤ t ≤ 1, so ez(t)dz = e2−it · idt,

C3 : z(t) = 2 + i− 2t, 0 ≤ t ≤ 1, so ez(t)dz = e2−2t−i · (−2)dt,

C4 : z(t) = i− it, 0 ≤ t ≤ 1, so ez(t)dz = ei(t−1) · (−i)dt.

∫

C

ez̄dz =

∫ 1

0

e2t · 2dt +

∫ 1

0

e2−it · idt +

∫ 1

0

e2−2t−i · (−2)dt +

∫ 1

0

ei(t−1) · (−i)dt =

[e2 − 1]− [e2−i − e2] + [e−i − e2−i]− [1− e−i] = −2 + 2e2 − 2e2−i + 2e−i =

−2 + 2e2 − 2e2(cos(1)− i sin(1)) + 2(cos(1)− i sin(1)).

2. (18 points) Let C be the circle of radius 5 centered at the origin and transversed
counterclockwise. Compute

∫

C

ez

z2 + 1
dz. (1)

Answer: Factoring z2 + 1 = (z − i)(z + i), we see that the function ez

z2+1
is

analytic on the region C \ {i,−i}. This region is not simply connected. Let C1

and C2 be the circles with radius 1/2, oriented counterclockwise, and centered
at i and −i respectively. The generalization of Cauchy-Goursat’s Theorem, for
non-simply-connected regions, implies the equality:

∫

C

ez

z2 + 1
dz =

∫

C1

ez

z2 + 1
dz +

∫

C2

ez

z2 + 1
dz.

Cauchy’s Theorem implies the equalities

∫

C1

(

ez

z+i

)

z − i
dz = 2πi

ei

2i
,

∫

C2

(

ez

z−i

)

z + i
dz = 2πi

e−i

−2i
.

Thus, the integral (1) is equal to π[ei − e−i] = 2π sin(1)i.



3. (18 points) Let C be the circle {z such that |z| = 10}, transversed counterclock-
wise. Evaluate

∫

C

sin(z)

(z − π

2
)n

dz,

for all integers n (positive, negative, or zero).

Answer: If n ≤ 0, then the function sin(z)
(z−π

2
)n is entire, and the integral is equal to

0, by Cauchy-Goursat’s Theorem.

For n ≥ 1, Cauchy’s Formula yields

(n− 1)!

2πi

∫

C

sin(z)

(z − π

2
)n

dz = sin(n−1)
(π

2

)

=

{

0 if n is even
(−1)k if n = 2k + 1.

Summarizing, we get

∫

C

sin(z)

(z − π

2
)n

dz =







0 if n ≤ 0,
0 if n is even

(−1)k 2πi

(n−1)!
if n = 2k + 1 > 0.

4. (16 points) Prove the equality

π

3
≤

∣

∣

∣

∣

∫

C

z + 1

z − 1
dz

∣

∣

∣

∣

≤ 3π, (2)

where C is the semi-circle, given by the parametrization z(t) = 2eit, 0 ≤ t ≤ π.

Answer: Both inequalities happen to hold. The lower bound is not as straight-
forward as I intended, and the upper bound on the right was ment to be 6π.
Nevertheless, this question happened to be the easiest for most students. Full
credit was given, if the method for establishing the right hand inequality was ex-
hibited. (Most students did get full credit here). We find an upper bound for the
ingtegral as follows.

Let M be an upper bound for z+1
z−1

over the circle C. Then

∣

∣

∣

∣

∫

C

z + 1

z − 1
dz

∣

∣

∣

∣

≤

∫

C

∣

∣

∣

∣

z + 1

z − 1

∣

∣

∣

∣

|dz| ≤

∫

C

M |dz| = M · length(C) = 2πM.

Now, the upper bound M = 3 for the integrand is found using the inequalities

|z + 1| ≤ |z| + 1 = 3,

|z − 1| ≥ |z| − 1 = 1,
∣

∣

∣

∣

z + 1

z − 1

∣

∣

∣

∣

≤ 3.

We can easily evaluate the integral explicitly, and verify that both inequalities in
(2) hold (this was not needed to get full credit). Observe the equality

z + 1

z − 1
= 1 +

2

z − 1
.
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Denote by C − 1 the translate of the semi-circle one unit to the left. Then C − 1
is in the domain of the branch of log(z) with argument in (−π

2
, 3π

2
). So,

∫

C

z + 1

z − 1
dz =

∫

C

[1 +
2

z − 1
]dz = [z + 2 log(z − 1))]−2

2 =

−4 + 2[log(−3)− log(1)] = −4 + 2[(ln(3) + iπ)− 0] =

2 ln(3)− 4 + 2πi.

5. (16 points) Let C1 be the curve, consisting of the piece of the graph of y = sin(x),
given by the parametrization

z(x) = (x + i sin(x)), 0 ≤ x ≤ 2π.

Let C2 be the piece of the graph of y = − sin(x), given by the parametrization

z(x) = (x− i sin(x)), 0 ≤ x ≤ 2π.

Compute the difference
∫

C1

dz

z − π

2

−

∫

C2

dz

z − π

2

Answer: The contours C1 and C2 have the same end points. Thus, C1 − C2 is
a closed contour. In fact, C1 − C2 is the figure ∞, whose left loop encloses π

2
.

Denote the left loop of C1−C2 by Γ1 and the right loop by Γ2. Then Γ1 is oriented
clockwise, Γ2 counterclockwise, and both are simple closed curves. The integral
over Γ2 vanishes, because 1

z−
π

2

is analytic on Γ2 and on the domain it encloses.

The integral over −Γ1 (with the counterclockwise orientation) is 2πi, by Cauchy’s
formula. We get

∫

C1

dz

z − π

2

−

∫

C2

dz

z − π

2

=

∫

Γ1

dz

z − π

2

+

∫

Γ2

dz

z − π

2

= −2πi + 0 = −2πi.

6. (12 points) Determine whether the following statements are true or false. Justify

your answers.

a) Let C be any contour from 1 to 8i, which does not pass through 0. Then the
following equality holds

∫

C

dz

z
= ln(8) +

π

2
i.

Answer: The statement is FALSE. The integral depends on the contour chosen.
If we choose C1 to be the straight line from 1 to 8i, the above equality holds.
Choose, for example, C2 to be another contour from 1 to 8i, passing “below” 0, so
that C1 − C2 is a simple closed contour enclosing 0. Then

∫

C2

dz

z
=

∫

C1

dz

z
−

∫

C1−C2

dz

z
=

∫

C1

dz

z
− 2πi.

b) Let P (z) = (z − 1)(z − 2i)(z + 4 + 5i)(z − 9i) and CR the circle of radius R,
centered at the origin, transversed counterclockwise. Let IR be the value of the
integral

∫

CR

dz

P (z)
.
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Then IR = I100, for all radii R satisfying R ≥ 100.

Answer: The statement is TRUE. All the roots of P (z) are contained in the
closed disk {z such that |z| ≤ 9}. The function 1

P (z)
is analytic outside this disk.

The statement follows from the Principle of Deformation of Paths (Corollary 2
page 118 in the text).

7. (12 points) a) (4 points) Let f(z) and g(z) be entire functions, and set P (z) :=
f(z)g(z). Prove the equality

P ′(z)

P (z)
=

f ′(z)

f(z)
+

g′(z)

g(z)
.

Answer:

P ′

P
=

f ′g + fg′

fg
=

f ′

f
+

g′

g
.

b) (8 points) Let P (z) be a polynomial of degree n. Let CR the circle of radius
R > 0, centered at the origin, transversed counterclockwise. Prove, the equality

∫

CR

P ′(z)

P (z)
dz = 2nπi,

provided R is sufficiently large. Hint: Do the case n = 1 first.

Proof: The Fundamental Theorem of Algebra implies, that P (z) factors as a
product of linear terms

P (z) = c · (z − λ1) · (z − λ2) · · · · · (z − λn).

Using part a) n + 1 times, we get

P ′

P
= 0 +

1

z − λ1
+ · · ·+

1

z − λn

.

Set R0 to be the maximum of all the absolute values |λi|, 1 ≤ i ≤ n. The circle
CR encloses all the roots of P , if R > R0. For such a radius, we get

∫

CR

P ′(z)

P (z)
dz =

n
∑

i=1

∫

CR

dz

z − λi

=

n
∑

i=1

2πi = 2nπi.

The second equality is established using Cauchy’s Formula.
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