Chapter 1:

1. Determine which of the following sentences are statements. What are the truth values of those that are statements.
(a) $\sqrt{2}$ is not a rational number.
(b) Is $\sqrt{2}$ a rational number ?
(c) Show that $\sqrt{2}$ is not a rational number.
(d) If $1=0$, then $5=4$.
2. Write the truth tables for each expressions.
(a) NOT (P OR Q)
(b) (P AND Q) implies R
(c) (NOT P) implies (Q is equiv to R).
3. Is (P implies Q) equivalent to (NOT P implies NOT Q)? Give reasons.
4. Negate each expression, and simplify your answer.
(a) $\forall x \forall y,(x \geq y)$;
(b) $\exists y \forall x,\left(x^{2}+y^{2}=1\right)$.
5. Determine whether the following are equivalent, and explain why.
(a) $\exists x,(P(x)$ OR $Q(x)) \quad(\exists x, P(x))$ OR $(\exists x, Q(x))$;
(b) $\exists x,(P(x) \Rightarrow Q(x)) \quad(\exists x, P(x)) \Rightarrow(\exists x, Q(x))$.
6. Let A, B be two sets. Show that $A \cap B=A \cup B$ if and only if $A=B$ (by direct proof method).
7. Show that if $x^{2}+2 x^{3}=5$, then $x<2$ (by contrapositive method).
8. Show that the equation $x^{2}+x+1=0$ has no real solutions (by contradiction).
9. Show that the statement "if $x^{2}>4$, then $x>2$ " is false (by counterexample).
10. Prove the following statements:
(a) If $m^{2}+n^{2}$ is an odd integer, then m is odd or n is odd;
(b) There are no integer solutions to $2 x^{3}+2 x+3=0$.
11. Disprove: $\forall x \in \mathbb{R}$, if $x^{3}+100 x-100>0$, then $x>1$.

Chapter 4:
12. Prove using Mathematical Induction: $\forall n \in \mathbb{P}$,

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \geq 2-\frac{1}{n}
$$

13. Prove using Mathematical Induction: Let $x \neq-1 . \forall n \in \mathbb{P}$,

$$
1-x+x^{2}+\cdots+(-1)^{n} x^{n}=\frac{1-(-x)^{n+1}}{1+x}
$$

14. A sequence of integers $x_{1}, x_{2}, x_{3}, \cdots$, is defined by $x_{1}=1, x_{2}=5$ and the recursion

$$
x_{n}=5 x_{n-1}-6 x_{n-2}, \forall n \geq 3
$$

Find an expression for x_{n} and use Mathematical Induction to prove that the expression is correct.
15. Find an expression for

$$
S_{n}=1-3+5-7+\cdots(-1)^{n+1}(2 n-1), \text { where } n=1,2,3, \cdots,
$$

and prove the expression for S_{n} is correct.
Chapter 2:
Use the Division or Euclidean Algorithm in the following problems.
16. Find the quotient and remainder when b is divided by a.
(a) $a=2011, b=231$,
(b) $a=-17, b=182$.
17. Find $\operatorname{gcd}(a, b)$ and $l c m(a, b)$.
$\begin{array}{ll}\text { (a) } a=598, b=132, & \text { (b) } a=432, b=-282 .\end{array}$
Use the Extended Euclidean Algorithm in the following problems.
18. Write $\operatorname{gcd}(100,35)$ in the form $100 x+35 y$ for some $x, y \in \mathbb{Z}$.
19. Find one integer solution, if there is one, of the linear Diophantine equations:
(a) $14 x+18 y=9$,
(b) $11 x+15 y=5$.
20. Find all integer solutions of the linear Diophantine equation $15 x-24 y=9$.
21. Find all positive integer solutions of the linear Diophantine equation $20 x+25 y=200$.

Miscellaneous.
22. Show that if a is odd and $a \mid 2 b$, then $a \mid b$.
23. Determine whether 191 is prime or not.

