Chapter 3:

1. Solve the linear congruences:
(a) $4 x \equiv 6(\bmod 14) \quad$ (b) $29 x \equiv 62(\bmod 128)$.
2. Construct the addition and multiplication tables for \mathbb{Z}_{6}.
3. Suppose the 9 -digit number $1234 x 6789$ is divisible by 9 . Find all possible values of x.
4. Solve for $x \in \mathbb{Z}: x^{6} \equiv 6 x(\bmod 7)$.
5. Find the multiplicative inverse of [3] in \mathbb{Z}_{41}.
6. Find the remainder when 14^{181} is divided by 99.
7. If $2 p^{2}=q^{3}$, where $p, q \in \mathbb{Z}$, show that 2 is a common divisor of p and q.
8. Show that an integer of the form $7 m+5$ can not be a perfect square.
9. Show that $\sqrt{6}$ is not a rational number.

The Chinese Remainder Theorem.
10. Solve the simultaneous congruences:
(i) $x \equiv 5(\bmod 7), x \equiv 23(\bmod 25)$.
(ii) $2 x \equiv 11(\bmod 13), 3 x \equiv 7(\bmod 8), 7 x \equiv 5(\bmod 9)$.
11. Find the last two digits of 556^{3333}.
12. Show that if p, q are integers, not divisible by 3 or 5 , then $p^{4} \equiv q^{4}(\bmod 15)$.
13. Solve for $x \in \mathbb{Z}: x^{2} \equiv 4(\bmod 30)$.
14. Solve for $x \in \mathbb{Z}: x^{32}+x+1 \equiv 0(\bmod 35)$.

Relations and Equivalence Relations.
15. Determine whether the following relations on \mathbb{Z} are reflexive, symmetric, or transitive.
(a) $a R b$ if and only if $a+b \neq 1$.
(b) $a R b$ if and only if $a-b \geq 0$.
(c) $a R b$ if and only if $a \neq b$.
16. Show that the following relation is an equivalence relation: for any real numbers a and $b, a R b$ if and only if $a-b=2 \pi k$ where $k \in \mathbb{Z}$.

Chapter 6: Functions, Cardinality
17. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by the formula $f(x)=\sqrt{x^{2}+1}$.
(a) What is the domain of f ?
(b) What is the codomain of f ?
(c) What is the image of f ?
(d) Find maximal subsets X, Y of \mathbb{R} such that $f: X \rightarrow Y$ is a bijection. Find a formula for the inverse $f^{-1}: Y \rightarrow X$.
18. Let $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ be the function $f([x])=\left[x^{2}\right]$ and let $g: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ be the function $g([x])=[2 x+1]$. Find a formula and construct a table for $f \circ g$. Sketch the graph of $f \circ g$ and decide whether it is injective or surjective.
19. Show that $\#\left(\mathbb{P}_{3} \times \mathbb{P}\right)=\# \mathbb{P}$ by constructing an explicit bijection $f: \mathbb{P}_{3} \times \mathbb{P} \rightarrow \mathbb{P}$.
20. Let X be the set consisting of integers which have remainder 1 when divided by 3 . Show that $\# X=\# \mathbb{Z}$.

