

Problem 10. Let $\Delta = \{(m, n) \in \mathbb{N} \times \mathbb{N} : m \geq n\}.$

- a) Draw a picture of Δ .
- b) Prove that the map $F: \mathbb{N} \times \mathbb{N} \to \Delta$ defined by

$$F(a,b) = (a+b-1,b)$$

is a bijection.

c) Let $G: \Delta \to \mathbb{N}$ be the map

$$G(m,n) = \frac{m(m-1)}{2} + n.$$

Compute G(1,1), G(2,1), G(2,2), G(3,1), G(3,2), G(3,3), G(4,1).

d) Prove that G is a bijection.

e) Compute the composition $H = G \circ F$ to obtain an explicit bijection

$$H: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
.

Problem 11. Given that $\mathbb{N} \times \mathbb{N}$ is countable (as proved in class), show by induction that the Cartesian product

$$\underbrace{\mathbb{N}\times\mathbb{N}\times\ldots\mathbb{N}}_{k}$$

of N with itself k times is countable, for any $k \in \mathbb{N}$.

Problem 12. Let X be the set of *finite* subsets of \mathbb{N} . Show that X is countable. Hint: it suffices to find an injection from X into N; how about $f(A) = \prod_{n \in A} p_n$ where p_n is the nth prime number? The set of all subsets of //

Problem 13. Find out what's bogus about the following "proof" that $\mathcal{P}(\mathbb{N})$ is countable.

Claim. There is an injective map from $\mathcal{P}(\mathbb{N})$ into \mathbb{N} hence, $\mathcal{P}(\mathbb{N})$ is countable.

Proof. If A is a subset of N, define $f(A) = \prod_{n \in A} p_n$ where p_n is the nth prime number. Then f is injective. Done.

Problem 14. Let $I = \mathbb{R} \setminus \mathbb{Q}$ be the set of irrational numbers. Prove that I is uncountable.

Problem 15. Give a bijection from $(0,1) = \{x \in \mathbb{R} | 0 < x < 1\}$ to \mathbb{R} , thereby showing that $|(0,1)|=|\mathbb{R}|$. Hint: think about a function that has an asymptote going to $-\infty$ near 0 and one going to $+\infty$ near 1.

Problem 16. Prove Proposition 13.29 from the text. (Hint: Find a nice function that maps (a,b) to (c,d) and sends a to c and b to d. If your function is "nice" enough, it will be bijective.)

Problem 17. Let $f: \mathbb{R} \to \mathbb{N}$ be a surjective function and define an equivalence relation on \mathbb{R} by $x \sim y \Leftrightarrow f(x) = f(y)$. Prove that there exists $x \in \mathbb{R}$ such that [x] is uncountable.

Problem 18. Suppose X is a non-empty set and let $f: X \to \mathcal{P}(X)$ be defined by

$$f(x) = X \setminus x.$$

Consider the subset $A = \{x \in X | x \notin f(x)\}$ of X (which plays a prominent role in Cantor's theorem). Determine A for the particular f we have just defined. set of all Bunctions Brow IN to 30,13

Problem 19. Consider the set

$$X = \text{Maps}(\mathbb{N}, \{0, 1\}) = \{f : \mathbb{N} \to \{0, 1\}\};$$

i.e, X is the set of sequences consisting of 0's and 1's. As usual, we identify the map f with the sequence $a_n = f(n)$. We say that two sequences $\{a_n\}$ and $\{b_n\}$ have the same tail if and only if there exists $n_0 \in \mathbb{N}$ such that $a_n = b_n$ for all $n \geq n_0$.

- a) Prove that "having the same tail" is an equivalence relation.
- b) Prove that for every $\{a_n\} \in X$ the equivalence class $[\{a_n\}]$ is a countable set.
- c) Prove that there are uncountably many equivalence classes in X. Hint: Use contradiction, together with the fact, proved in class, that X is uncountable.

Problem 20. Prove all Propositions from Chapter 13 not proved in class.