Chapter 3: Review Questions for Midterm 2

- 1. Solve the linear congruences:
- (a) $4x \equiv 6 \pmod{14}$
- (b) $29x \equiv 62 \pmod{128}$.
- 2. Construct the addition and multiplication tables for \mathbb{Z}_6 .
- 3. Suppose the 9-digit number 1234x6789 is divisible by 9. Find all possible values of x.
- 4. Solve for $x \in \mathbb{Z}$: $x^6 \equiv 6x \pmod{7}$.
- 5. Find the multiplicative inverse of [3] in \mathbb{Z}_{41} .
- 6. Find the remainder when 14¹⁸¹ is divided by 99.
- 7. If $2p^2 = q^3$, where $p, q \in \mathbb{Z}$, show that 2 is a common divisor of p and q.
- 8. Show that an integer of the form 7m + 5 can not be a perfect square.
- 9. Show that $\sqrt{6}$ is not a rational number.

The Chinese Remainder Theorem.

- 10. Solve the simultaneous congruences:
- (i) $x \equiv 5 \pmod{7}$, $x \equiv 23 \pmod{25}$.
- (ii) $2x \equiv 11 \pmod{13}$, $3x \equiv 7 \pmod{8}$, $7x \equiv 5 \pmod{9}$.
- 11. Find the last two digits of 556³³³³.
- 12. Show that if p, q are integers, not divisible by 3 or 5, then $p^4 \equiv q^4 \pmod{15}$.
- 13. Solve for $x \in \mathbb{Z}$: $x^2 \equiv 4 \pmod{30}$.
- 14. Solve for $x \in \mathbb{Z}$: $x^{32} + x + 1 \equiv 0 \pmod{35}$.

Relations and Equivalence Relations.

- 15. Determine whether the following relations on \mathbb{Z} are reflexive, symmetric, or transitive.
- (a) aRb if and only if $a + b \neq 1$.
- (b) aRb if and only if $a b \ge 0$.
- (c) aRb if and only if $a \neq b$.
- 16. Show that the following relation is an equivalence relation: for any real numbers a and b, aRb if and only if $a b = 2\pi k$ where $k \in \mathbb{Z}$.

Chapter 4:

12. Prove using Mathematical Induction: $\forall n \in \mathbb{P}$,

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ge 2 - \frac{1}{n}$$
.

13. Prove using Mathematical Induction: Let $x \neq -1$. $\forall n \in \mathbb{P}$,

$$1 - x + x^{2} + \dots + (-1)^{n} x^{n} = \frac{1 - (-x)^{n+1}}{1 + x}.$$

14. A sequence of integers x_1, x_2, x_3, \cdots , is defined by $x_1 = 1, x_2 = 5$ and the recursion

$$x_n = 5x_{n-1} - 6x_{n-2}, \forall n \ge 3.$$

Find an expression for x_n and use Mathematical Induction to prove that the expression is correct.

15. Find an expression for

$$S_n = 1 - 3 + 5 - 7 + \cdots (-1)^{n+1} (2n-1)$$
, where $n = 1, 2, 3, \cdots$

and prove the expression for S_n is correct.

Questions from Spring 2014 midterni: (Solin is on the web).

7. (15 points) Use induction to prove that, for every natural number n,

$$\left(1 + \frac{1}{1}\right)\left(1 + \frac{1}{2}\right)\cdots\left(1 + \frac{1}{n}\right) = n + 1$$

- 8. (15 points) Prove that $\sum_{k=0}^{n} (-1)^{n-k} {n \choose k} 2^{2k} = 3^n$. (Hint: Use the Binomial Theorem.)
- 9. (10 points) Let n be a natural number. Prove that if n^2 is divided by 4, the remainder is either 0 or 1.
- Second Midterm: Wednesday, March 30, 6:00 to 7:30 PM. Room: LGRC A301.
 Review for second midterm: Monday, March 28, from 3:00 to 4:30 PM, Room: LGRT 204.
- You may bring one 8.5" x 11" sheet of **notes** (both sides) to all exams.

· Material for midler 2: ch 4, and ch 3

up to sec 3,6 (in cluding)