Math 300 Section 2 Midterm $2 \quad$ Spring 2016
Name: \qquad

1. (15 points) Define the sequence x_{n} as follows. $x_{1}=1, x_{2}=5$, and

$$
x_{n}=x_{n-1}+2 x_{n-2}, \text { for all } n \geq 3 .
$$

Find an expression for x_{n} and prove, by induction, that the expression is correct. Hint: Compute the difference $x_{n}-2^{n}$ for the first few terms.
2. (15 points) Let p be a prime.
(a) Prove that $\binom{p}{k} \equiv 0(\bmod p)$, for $0<k<p$.
(b) Use induction on n to prove that $n^{p} \equiv n(\bmod p)$, for all positive integers n (Fermat's Little Theorem). Credit will be given only for a proof by induction. Hint: In the induction step you will need the Binomial Theorem and part 2a.
3. (15 points) Determine the number of congruence classes which solve the linear congruence $9 x \equiv 6(\bmod 15)$ and find all of them. Justify your answer!
4. (15 points) Find all integers x solving the congruence $x^{12} \equiv 5 x(\bmod 13)$. Justify your answer.
5. (15 points) Find the inverse of [25] in \mathbb{Z}_{41}.
6. (15 points) Find all integers x solving the simultaneous congruences

$$
\begin{align*}
x & \equiv 2(\bmod 5) \tag{1}\\
x & \equiv 18(\bmod 24) \tag{2}
\end{align*}
$$

Justify your answer.
7. (15 points) Let R be the relation on the integers \mathbb{Z} given by $x R y$ if and only if $x^{2}+x+1 \equiv y^{2}+y+1(\bmod 5)$.
(a) Show that R is an equivalence relation.
(b) Find a pair of integers (x, y), such that $x \not \equiv y(\bmod 5)$ and $x R y$.
(c) The equivalence relation R determines a partition of \mathbb{Z} into equivalence classes with respect to R. Determine the number of equivalence classes in this partition and find a representative for each equivalence class. Justify your answer!

