Math 300 Section 2

Midterm 2

Spring 2016

Name:_____

1. (15 points) Define the sequence x_n as follows. $x_1 = 1, x_2 = 5$, and

 $x_n = x_{n-1} + 2x_{n-2}$, for all $n \ge 3$.

Find an expression for x_n and prove, by induction, that the expression is correct. Hint: Compute the difference $x_n - 2^n$ for the first few terms.

- 2. (15 points) Let p be a prime.
 - (a) Prove that $\binom{p}{k} \equiv 0 \pmod{p}$, for 0 < k < p.
 - (b) Use induction on n to prove that $n^p \equiv n \pmod{p}$, for all positive integers n (Fermat's Little Theorem). Credit will be given only for a proof by induction. Hint: In the induction step you will need the Binomial Theorem and part 2a.
- 3. (15 points) Determine the number of congruence classes which solve the linear congruence $9x \equiv 6 \pmod{15}$ and find all of them. Justify your answer!
- 4. (15 points) Find all integers x solving the congruence $x^{12} \equiv 5x \pmod{13}$. Justify your answer.
- 5. (15 points) Find the inverse of [25] in \mathbb{Z}_{41} .
- 6. (15 points) Find all integers x solving the simultaneous congruences

$$x \equiv 2 \pmod{5},\tag{1}$$

$$x \equiv 18 \pmod{24}.$$
 (2)

Justify your answer.

- 7. (15 points) Let R be the relation on the integers \mathbb{Z} given by xRy if and only if $x^2 + x + 1 \equiv y^2 + y + 1 \pmod{5}$.
 - (a) Show that R is an equivalence relation.
 - (b) Find a pair of integers (x, y), such that $x \not\equiv y \pmod{5}$ and xRy.
 - (c) The equivalence relation R determines a partition of \mathbb{Z} into equivalence classes with respect to R. Determine the number of equivalence classes in this partition and find a representative for each equivalence class. Justify your answer!