MATH 300 MIDTERM FALL 2015

There are totally 9 problems in this exam.

Show all your work !!!

- 1. (15 pts) Let P, Q be statements. Show that the statement NOT (P OR Q) is equivalent to the statement (NOT P) AND (NOT Q) by showing they have the same truth tables.
 - 2. (10 pts) Prove or give a counterexample to the following statement:

$$\forall x \in \mathbb{Z}, \ 2x^3 + 2x + 5 \neq 0.$$

3. (10 pts) Prove, using the contrapositive method, that

if
$$2x^3 + 3x^2 + 5x - 10 \le 0$$
, then $x \le 1$.

4. (10 pts) Define the sequence x_n as follows:

$$x_1 = x_2 = 6$$
, and for $n \ge 3$, $x_n = 2x_{n-1} + 3x_{n-2}$.

Prove that for all $n \ge 1$, $x_n = 3(3^{n-1} + (-1)^{n-1})$.

- 5. (10 pts) Determine whether the following is true or not, and explain why. NOT $(\forall x \in D, P(x) \Rightarrow Q(x))$ is equivalent to $\exists x \in D, ((\text{NOT } P(x)) \text{ AND } Q(x))$.
- 6. (10 pts) Find an expression for

$$S_n = 1 - 2 + 3 - 4 + \dots + (-1)^{n+1}n$$
, where $n = 1, 2, 3, \dots$,

and prove the expression for S_n is correct.

7. (15 pts) Consider the linear Diophantine equation: 10x + 25y = 200.

(1) Find all integer solutions of the equation.

- (2) Find all non-negative integer solutions of the equation.
- 8. (10 pts) Determine whether 223 is prime or not, and explain why.
- 9. (10 pts) Let $u, v \in \mathbb{Z}$. Suppose gcd(3, u) = 1. Prove that if $u \mid 9v$, then $u \mid v$.