Math 300 Section $2 \quad$ Final Exam Spring 2016
Name: \qquad
Justify all your work!

1. (a) (5 points) Let the universe of discourse be the real numbers. Prove or disprove the following statement.

$$
\exists x \forall y\left((x+y)^{2}+5(x+y)+6>0\right)
$$

(b) (5 points) Let the universe of discourse be the positive integers. Write the contrapositive of the following statement.
If $p \mid a b$, then $(p \mid a$ OR $p \mid b)$.
2. (a) (10 points) Let X be a set, $S \subset X$ a subset, and $S^{c}:=\{x \in X: x \notin S\}$ the complementary subset. Assume that $\sharp(S)=\sharp(\mathbb{P})$ and $\sharp\left(S^{c}\right)=\sharp(\mathbb{P})$, i.e., the cardinalities of both S and S^{c} are equal to the cardinality of the set \mathbb{P} of positive integers. Prove that $\sharp(X)=\sharp(\mathbb{P})$.
Hint: By assumption, there exist bijections $f: S \rightarrow \mathbb{P}$ and $g: S^{c} \rightarrow \mathbb{P}$. Use them to construct a bijection $h: X \rightarrow \mathbb{P}$. Prove that your h is bijective.
(b) (10 points) Regard the set \mathbb{Q} of rational numbers as a subset of the real numbers \mathbb{R} and let \mathbb{Q}^{c} be the set of irrational real numbers. Prove that $\sharp\left(\mathbb{Q}^{c}\right) \neq \sharp(\mathbb{P})$ (so that \mathbb{Q}^{c} is uncountable). Hint: Use part 2a.
3. (10 points) Use Mathematical Induction to prove that for all $n \geq 1$,

$$
\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\left(\frac{n+2}{2^{n}}\right)
$$

4. (10 points) Set $\mathbb{P}_{n}=\{1,2, \ldots, n\}$, where $n \geq 3$. Consider the permutations $\rho:=\left(\begin{array}{ccccc}1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1\end{array}\right)$ and $\sigma:=\left(\begin{array}{ccccc}1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1\end{array}\right)$. Note that ρ is a cyclic shift one position to the right, and σ reverses the order. Compute ρ^{-1} and $\sigma \circ \rho \circ \sigma$. Suggestion: Do it first for $n=4$ so that $\rho:=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$ and $\sigma:=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)$.
5. (10 points) Find the remainder when 5^{66183} is divided by 99. State any theorem you use and carefully justify your answer!
6. (10 points) Find the multiplicative inverse of 80 in \mathbb{Z}_{253}. Justify your answer. A complete answer will involve the Extended Euclidian Algorithm.
7. (10 points) Solve the simultaneous congruences

$$
\begin{align*}
3 x & \equiv 10 \quad(\bmod 41) \tag{1}\\
x & \equiv 20 \quad(\bmod 23) \tag{2}
\end{align*}
$$

8. (10 points) Consider the relation R on the set of real numbers defined by $x R y$ if and only if $x-y$ is an integer. Prove that R is an equivalence relation.
9. (10 points) Prove that there are precisely three congruence classes in \mathbb{Z}_{280}, which solve the congruence

$$
x^{3} \equiv 13 \quad(\bmod 280)
$$

You are not asked to find the solutions. State any theorem you use and carefully justify your answer.

