There are 10 problems in this exam.

Show all your work. Good luck !!!

1. This problem consists of 3 independent parts.

(1) (5 pts) Negate the expression: $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, (x^2 - y = 1) \Rightarrow (x \neq y).$

(2) (5 pts) Disprove: $\forall x \in \mathbb{R}$, if $x^3 + 40x^2 - 41 \ge 0$, then x > 1.

- (3) (5 pts) Let R be the relation on the set \mathbb{Q} defined as follows: for any $x, y \in \mathbb{Q}$, xRy if $x y \ge 0$. Is R an equivalence relation? Why?
 - 2. (10 pts) Prove that $x^3 + 2x 2 = 0$ has no integer solutions by contradiction.
 - 3. (10 pts) Solve for $x \in \mathbb{Z}$: $2x^{33} + 5x + 1 \equiv 0 \pmod{34}$.
 - 4. (10 pts) Find the last 2 digits of 423^{324} .
 - 5. (10 pts) Solve linear congruence: $48x \equiv 20 \pmod{44}$.
 - 6. (10 pts) Prove that there exists no $m \in \mathbb{Z}$ such that 7m + 6 is a perfect square.
 - 7. (10 pts) Show that the function $f: \mathbb{Z}_{11} \to \mathbb{Z}_{11}$, where $f([x]) = [6] \cdot [x]$, is a bijection. Furthermore, find a formula for the inverse $f^{-1}: \mathbb{Z}_{11} \to \mathbb{Z}_{11}$.
 - 8. (5 pts) Use Mathematical Induction to show that for any $n \geq 1$,

$$1 + t + t^2 + \dots + t^n = \frac{1 - t^{n+1}}{1 - t}.$$

- 9. (10 pts) Solve for $x \in \mathbb{Z} : x^3 \equiv 11 \pmod{30}$.
- 10. (10 pts) Prove that $\#\mathbb{P} = \#(\mathbb{P}_2 \times \mathbb{P})$ by constructing an explicit bijection (i.e., given by a formula) from \mathbb{P} to $\mathbb{P}_2 \times \mathbb{P}$. Furthermore, find a formula for the inverse of your bijection.

See the homewors on Sec 6.9 (Permutations) (11. Prove, by induction, that every permutation of Ellipho can be written as a composition of transposition

- See HW 13 Prob 115 Bon definiti