Name:____

1. (15 points) Define the sequence x_n of rational numbers as follows. $x_1 = 1$, and

$$x_{n+1} = \left(\frac{n}{n+1}\right)x_n + 1$$
, for all $n \ge 1$.

Find an expression for x_n and prove, by induction, that the expression is correct.

$\frac{4}{x_{m}} \frac{1}{1} \frac{2}{1+1} \frac{3}{1+1} \frac{3}{2} \frac{3}{2} + 1 \frac{3}$	+1/2
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	2
$\begin{array}{c c} (1+1) & (2+1)$	
\sim 1 1 \leq 1	
3/2	
2	
y · · · · · · · · · · · · · · · · · · ·	
Claim (X 3 M+1) 2	
Claim; (X M = M+1) 2	
Proof by induction;	
$Care n = 1; x_1 = 1 = 1+1$	
$\frac{1}{2} \frac{1}{2} \frac{1}$	
giver t	
Assume that & halds for n.	1
$\chi_{n+1} = \frac{n}{2} \cdot \chi_{n+1} = \frac{m+1}{2} $.1
Assume that \otimes halds for n ,	•

for n+1 as well. Hence hald to by $f^{(n)}(x)$ its n-th depicts: formula (x) 2. (15 points) Let $f(x) = e^{3x}$ and denote by $f^{(n)}(x)$ its *n*-th derivative. Prove the following identity for all positive integers n. $\sum_{k=0}^{n} \binom{n}{k} 2^{n-k} f^{(k)}(x) = 5^{n} e^{3x}.$ $= 3 e^{3x} \qquad f'(x) = 3 \cdot 3 e^{3x} = 3^{n} e^{3x}.$ $\beta(x) = e^{3x}$ $\beta'(x) = 3e^{3x}$ $\beta^{(n)}(x) = 3e^{3x}$ $\sum_{k=1}^{\infty} {n \choose k} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 1} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3} = {n \choose 0} \frac{1}{3} + {n \choose 0} \frac{1}{3}$ $+b)^{m} = \sum_{\kappa>e}^{n} \binom{n}{\kappa} a^{m-\kappa} b^{\kappa}$ 5°. So egæ holds. The Binomial Thewren

3. (15 points) Determine the number of congruence classes which solve the linear congruence $25x \equiv 35 \pmod{45}$ and find all of them. Justify your answer!

Recall: Prop:(1) The linear congruence $a \times = c \pmod{n}$ has a solution, if and only of t:= g cd(a,n) | c. () ax + ny = c has a solution) (22) If to is a porticular solution of the general solution is \times_{0} , \times_{0} + $\frac{M}{d}$, \times_{m} + $\frac{(d-1)^{m}}{d}$ madulo M. 0555 d-1 there are precisely congruence classes in Un (者) 25× = 35 [mal 45) di = gcd(25, 45) = 5 | 35. 5 · 3 · 3 · 3 · 3

congruence clusses

in Z45, Linear We salve the Dicphantine ex. 25 X + 45y = 35 wing E.E.A. First solve $\frac{N}{25} \times + 45 \text{ y} = \text{gcd}(35, 45) = 5.$ $45 \text{ y}_{1} + 25 \text{ X}_{1} = R_{1}$ 4 i | Xn: | Pr | 80 (-1)45+25.2=5. Mulliply by 7 50 25.14 + 45 (-7) = 5.7 xo=14 is a postricular solution to 25 x = 35 (mad 45). The general solution mad 45 (in \$248) is

5. (15 points) Use the Chinese Remainder Theorem in order to determine (only) the **number** of congruence classes in \mathbb{Z}_{65} solving the congruence

$$[x]^{14} + 12[x]^{12} \equiv [3].$$
 (mod 5.13)

You do not need to actually solve the congruence. Justify your answer.

Then \mathbb{Z}_{S} $[\times]^{14} + 12[\times]^{12} = [a_{2}]^{14} + 12[a_{2}]^{12} = [3]$ choice of az Similarly in Il3. So X Solve (x) For each pair ([45, [62]) in Z5 × Z13 such that [a,] is a solution of (1) [[ast is a solution of (2) We get a unique [x] in [5,13] Salving & HAny Salution is of this Jam. 50 # solutions of 2 # Solutions of (1) in Z 5 # Soluling (2) in Z13, In Ts; (1) [x] 4 + 12 [x] = [3] (mod 8) In 75 [x] = [x], by FLT. SO $[x]^{14} = [x]^{5} [x]^{5}, [x]^{4} = [x]^{6} = [x]^{5} [x]^{2} = [x]^{6}$ [x]12- [x]5[x]5[x]5[x] =[x] 4 [x] 4 [x] + (g) FLTA 2 COZ P [X]=0

[0] ionst a solm q (1). Assume [x] \$\forall [0]\$ [x] + [12][1] = [3] ni Z5 [x]2 = [1] in Z5 S9 [8] = [1] OT [-1]. TWO SOLN In 7/13; (2) [x]14 + 12 [x]12 [3] (mad 13) [x] = [0] is not a solar. Assume $[x] \neq [0]$, so $[x]^{13-1} = [n]$ by FL,T $[x]^{14} = [x]^{13} [x] = [x]^2$ ||| F-LT [x] The LHS of (2) is [x32+ [-1]. [1] = [3]

6. (15 points) Find all integers x solving the simultaneous congruences

1. (To points) Find all integers
$$x$$
 solving the simultaneous congruences $x = 17 \pmod{41}$, $x = 20 \pmod{23}$. (2)

Justify your answer. $y \in A(41, \lambda 3) = L$

We will use the CRJ to convert

(1) and (2) to a Single congruence $(mad 41 \cdot \lambda 3)$.

Solution!

(1) (2) (1) $\times + 41 y = 17$

Plug wite (2) to get

 $X = 17 - 41y = 20 \pmod{23}$
 $-41y = 20 - 17 = 3$
 $41y = -3 \pmod{23}$.

So $[y] = [41]^{-1}[-3]$ in $[3]$

As in Thob H, we use the $[5]$ EA to both $[41]^{-2} = [9]$ in $[3]$ $[5]$ $[5]$ $[6]$

Suppose that xRy and yRz,
We need to show xRz,

(8Ry and yRz) (X-y eZ and

y-2 eZ) =)

(x-y)+(y-2) & Z (x) xRz.

X-2

QED