\qquad

1. (15 points) Define the sequence x_{n} of rational numbers as follows. $x_{1}=1$, and

$$
x_{n+1}=\left(\frac{n}{n+1}\right) x_{n}+1, \text { for all } n \geq 1
$$

Find an expression for x_{n} and prove, by induction, that the expression is correct.

Claim: $x_{n}{ }^{\frac{\beta \pi}{=}} \frac{n+1}{2}$
Proof by induction;
case $x=2 ; \quad \begin{aligned} & x_{1}=1 \\ & T_{\text {giver }}\end{aligned}$
Assume that \otimes hards for n.

$$
x_{n+1}=\frac{n}{n+1} \cdot \underbrace{x_{n}}_{n}+2=\frac{1}{2}+1=\frac{n+2}{2}=\frac{(n+2)+1}{2}
$$

So formula $*)^{\frac{n+1}{2}}$ hold for $n+7$ as well. Hence hold
 Solon $\underset{\sum}{\sum\binom{n}{k}}$

$$
\begin{aligned}
& b(x)=e^{3 x}, b^{\prime}(x)=3 e^{3 x}, \\
& b^{(n)}(x)=f^{n} e^{3 x}(x)=3 \cdot 3 e^{3 x}=3^{2} e^{3 x} \\
& e^{3 x} \cdot 5^{\prime \prime}=R H S
\end{aligned}
$$

$$
u_{k}=\sum_{k=0}^{n}\binom{n}{k} 2^{n-k} \underbrace{3^{k} e^{3 x}}_{e^{n+} c^{(c)} b^{(k)}(x)}=e^{3 x} \sum_{3^{n}=0}^{n}\binom{n}{k} 2^{n-k} \cdot 3^{n-1})
$$

So $(f)=5^{n}$. So eq \oplus holds. By the Binomial Thearem

$$
\begin{aligned}
& \left.\begin{array}{l}
\sum_{k=0}^{n}\binom{n}{k} 2^{n-k} 3^{k}=\binom{n}{0} 2^{n}+\binom{n}{1} \alpha^{n-2} 3^{2}+\cdots+\binom{n}{-n-1} \begin{array}{c}
1 \\
1
\end{array} 3^{n-1}+\left(\begin{array}{c}
n \\
n \\
n
\end{array}\right) \\
1
\end{array} \right\rvert\, \\
& \begin{array}{c}
(a+b \\
\prod_{2}^{n}\left(\begin{array}{c}
n \\
3
\end{array}\right. \\
2
\end{array}=\sum_{k=e}^{n}\binom{n}{k} a^{n-k} b^{k}
\end{aligned}
$$

Recall: Prop: (l)The linear congruence

* $\quad a x \equiv c \quad(\bmod n)$
has a solution, if and only if $a_{i}=\operatorname{gcd}(a, x) \mid c$.
$(\Leftrightarrow a x+n y=c$ has a solution)
(ii) If x_{0} is a ponticulor solution of ($*$ then the g enesal solution is

$$
x_{0}, x_{0}+\frac{M}{d}, \frac{\frac{k^{M}}{d}}{d}, x_{m}+\frac{(d-1)^{M}}{d}
$$

modulo n. So there are precisely $\frac{d}{x}$ congruence classes is \mathbb{Z}_{n} solving
(*) $25 x \equiv 35$ (mad 45)

$$
d_{i}=\operatorname{gcd}(25,45)=5
$$

35. So a precisely
solution exists, ${ }^{3}$ and the are thea $d=5$ congruence classes solving $*$
in $\mathbb{Z} 45$,
We solve the ${ }^{\text {Liner }}$ Diophantine ez.

$$
25 x+\underset{\min }{45 y=35} \text { using } E E, A
$$

First solve $\frac{n}{n i} \frac{\text { in the Prop }}{25 x+4 S} y=y c d(25,45)=5$.

$$
45 y_{i}+25 x_{i}=\pi_{i}
$$

y_{i}	x_{i}	r_{i}	q_{i}
1	0	45	-
\cap	2	25	-
1	-1	20	1
-1	2	5	1
		0	

$(-1) 45+25 \cdot 2=5 . \quad$ Multiply by 7
So

$$
25 \cdot \underbrace{14}_{2 \cdot 7}+45(-7)=\underbrace{5.7}_{35}
$$

$x_{0}=14$ is a pontricular solution to $25 x \equiv 35 \quad(\bmod 45)$.
The general solution mad 45 (iv \mathbb{Z}_{45}) is
[80] [x] $\stackrel{\otimes}{=}$ [1] in \mathbb{Z}_{253},
A sol'n exists if and only if
$\operatorname{gcd}(80,253) \mid$, which is the

$$
1^{\prime \prime} \quad 2^{3} \cdot 10=2^{4} \cdot 5
$$

is equivalent tor the Diophiontime
$e q \quad 80 x+253 y=1$.

$$
253 y_{i}+80 x_{i}=r_{i}^{\prime}
$$

$$
253.37+80(-117)=1
$$

So $[80][\underbrace{-117}_{\approx 136}] \stackrel{4}{\equiv} \quad(\bmod 253)$
S. $[80]^{-t}=[136]$ in 7253 ,
5. (15 points) Use the Chinese Remainder Theorem in order to determine (only) the
number of congruence classes in \mathbb{Z}_{65} solving the congruence $[x]^{14}+12[x]^{12} \equiv[3] . \quad(\operatorname{Mod} 5,13)$
You do not need to actually solve the congruence. Justify your answer.
$65=5 \cdot 13$. Strategy:
suppose that x is a solution. Write $b:=\gamma^{14}+12 x^{12}$. Then $b \equiv 3(\bmod 5 \cdot 13)$,
So $b \equiv 3$ ($\operatorname{mad} 5$)
and $b=3$ (mad 13),
conversely; Suppose that
[a_{1}] is a solution in \mathbb{Z}_{5} of (1) $[x]^{14}+12[x]^{12} \equiv[3]^{5}(\bmod 5)$ and $\left[a_{2}\right]$ is a solatim in \mathbb{Z}_{13} of (2) $[x]^{14}+12[x]^{12} \equiv[3] \quad(\bmod 13)$

Then there exists a unique sols $[x]$ is $\mathbb{Z}_{5.13}$, such that

$$
\begin{aligned}
& x \equiv a_{1}(\bmod 5) \\
& x \equiv a_{\alpha} \quad(\bmod 13) .
\end{aligned}
$$

Then in lo_{5}

$$
\left.[x]^{14}+12[x]^{12}=\left[a_{f}\right]^{14}+12\left[a_{y}\right]^{12}={ }_{3}\right]
$$

by the
similarly is \mathbb{Z}_{23}.
So x Solve *
Far each pair $\left(\left[a_{1},\left[a_{2}\right\}\right)\right.$ in $\mathbb{Z}_{5} \times \mathbb{Z}_{13}$ such that $\left[a_{2}\right]$ is a solution of (1) and $\left[a_{2}\right]$ is a Solution $o(2)$ We get a unique $[x]$ in $\mathbb{Z}_{5,13}$ Salving *2 Ah Any Solution is of this form. So \# solutions $Q(* \geq$ \#Solutions of (1) in \mathbb{Z}_{5}
time

* Solulim op (d) in $\mathbb{Z} 13$,

In \mathbb{Z}_{5} :
(1) $[x]^{14}+12[x]^{12} \equiv[3] \quad(\bmod 5)$

In $\mathbb{Z}_{5} \quad[x]^{5}=[x]$ by $F L T$. So

$$
\begin{aligned}
& {[x]^{14}=[x]^{5}[x]^{5} \cdot\{x]^{4}=[x\}^{6}=[x]^{5} \cdot[x]=[x\}_{1}^{\alpha}} \\
& {[x]^{12}=[x]^{5}[x]^{5}[x]^{2}=[x]^{4}=\left\{\begin{array}{ccc}
{[x+\}} & \text { if }[x] \neq<0]
\end{array}\right.} \\
& F_{C L} T^{\pi}\{\cos \text { p }[x]=0
\end{aligned}
$$

[0] is mst a solm of (1). Assune $[x] \nsubseteq[0]$ So LHS of (1) ∞

$$
\begin{aligned}
& {[x]^{\alpha}+\underset{\operatorname{lin}}{\operatorname{l2}][1]}=[3] \quad \text { in } \mathbb{Z}_{5}} \\
& {[x]^{2}=[1] \quad \text { in } \quad \mathbb{Z}_{5}} \\
& S_{0} \quad[x]=[1] \quad \text { or }[-1]
\end{aligned}
$$

TWO sok ii \mathbb{Z}_{5}
In $\mathbb{Z} 13 ;$
(2) $[x]^{14}+12\left[x 3^{12} \equiv[3]\right.$
$[x]=\{0\}$ is not a sol's. Asslume $[x] \neq[0]$, so, $[x]^{13-2}=[1]$ by F, T

$$
[x]^{14}=\underbrace{[x]^{13} F L T}_{[x]}[x]=[x]^{2}
$$

The LHS of (α) is

$$
\begin{aligned}
& {[x]^{2}+[-1] \cdot[1] \equiv[3]} \\
& \left.[x]^{2} \equiv[4] \quad \bmod 13\right) \\
& {[x]=[2] \text { or }[-2] .}
\end{aligned}
$$

Sn the \#Soln to oniginal wi $\mathbb{Z}_{5,0}$
$\infty \longdiv { 2 \cdot 2 } = 4$,
6. (15 points) Find all integers x solving the simultaneous congruences

$$
\begin{aligned}
& x \equiv 17(\bmod 41) \\
& x \equiv 20(\bmod 23)
\end{aligned}
$$

$$
\operatorname{gcd}(42,23)=1
$$

We wind mure the $C R, T$ to convert (2) and (2) to a single congrinente $(\operatorname{mad} 41.23)$.
Solution:

$$
(1) \Leftrightarrow(1)^{\prime} \quad x+41 y=17
$$

Plug vito (α) to get

$$
\begin{gathered}
x=17-41 y \equiv 20 \quad(\bmod 23) \\
-41 y \equiv 20-17=3 \\
41 y \equiv-3 \quad(\bmod 28)
\end{gathered}
$$

Sa $[y]=[41]^{-1}[-3]$ in \mathbb{E}_{23}
As in Bob 4 , we we the EEA A bind $\left[413^{-2}=[g]\right.$ in $x_{\alpha 3}$. So $[y]=[-9 \cdot 3]=[-.27]=[-4]$
So $y=-4+232,2$ an integed.

$$
x=17-41(-4+232)=17+164+23 \cdot 41(-2)
$$

So $x \equiv 181(\bmod 23 \cdot 41))^{281}$
. (15 points) Consider the relation R on the set of real numbers defined by $x R y$ if
and only if $x-y$ is an integer. Prove that R is an equivalence relation.
So the general solution, by the CRT, $\operatorname{is}_{\{x \in 7:} x \equiv 181 \quad$ (and 23. 211$)_{0}$

We need to show that R is
Reflexive, Sy monetros, and Transitive.
Reflexive ${ }_{j}^{0} \times R x \Leftrightarrow \underbrace{x-x}$ is an witeges
Indeed a io an ${ }^{\prime \prime}$ integer so x Rr holds for every $x \in \mathbb{R}$,
Symmetric; Assume that $x R y$, We Meed to show $y R x$.
$x R_{y} \Leftrightarrow(x-y) \in \mathbb{Z} \Leftrightarrow(y-x) \in \mathbb{Z} \Leftrightarrow y P_{x}$,
so R is symmetric,
Transitive
suppose that $x R y$ and $y R_{z}$, We need to show $\quad * R_{z}$,
$\left(x R_{y}\right.$ and $\left.y R_{z}\right) \ll(x-y \in \mathbb{Z}$ and

$$
y-2 \in \mathbb{Z}) \Rightarrow
$$

