Name:

1. (15 points) Let P and Q be statements. Find the truth tables of the following statements and use them to determine if they are equivalent.
i) $P \Rightarrow Q$.
ii) $(\operatorname{NOT} P)$ OR $(\operatorname{NOT} Q) \Rightarrow(\operatorname{NOT} P)$.
2. (10 points) Let the universe of discourse be the real numbers. Prove the following statement: $\forall \epsilon>0 \exists \delta>0,|x-2|<\delta \Rightarrow|3 x-6|<\epsilon$.
3. (10 points) Let the universe of discourse be the real numbers. Write first the contrapositive and then the converse of the following statement. If $x^{2}+y^{2}=25$, then $|x| \leq 5$.
4. (15 points) Let S and T be sets. Prove or give a counter example.
$S \cup T=T \Leftrightarrow(S \subset T)$. Hint: Write the definition of $S \cup T$ in the form $S \cup T=$ $\{x$: some condition involving x, S, and $T\}$. Then use the membership condition in your answer.
5. (10 points) How many positive common divisors do 600 and 4500 have? Justify your answer!
6. (10 points) Prove that $\operatorname{gcd}(a, c)=1$ and $\operatorname{gcd}(b, c)=1$ if and only if $\operatorname{gcd}(a b, c)=1$.
7. (15 points) a) Use the Extended Euclidean Algorithm (E.E.A) to find a particular solution of the equation $57 x+12 y=\operatorname{gcd}(57,12)$. (Credit will be given only if the E.E.A is used).
b) Find all the integer solutions of the equation $57 x+12 y=300$. Show all your work.
c) Find all positive integer solutions of the equation $57 x+12 y=300$.
8. (15 points) Use induction to prove the following inequality for all positive integers n.

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{n}} \geq 1+\frac{n}{2}
$$

Hint: The left hand side is the sum $\sum_{k=1}^{2^{n}} \frac{1}{k}$ of 2^{n} terms, so when n is increased by 1 the number of terms gets multiplied by 2 .

