Math 235 section 4 Midterm 1

. Spring 2009
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1. (15 points) a) Shfm that the row reduced echelon form of the augmented matrix
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most seven elementary operations. Show all your work.
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2. a) (8 points) Find the inverse of the matrix A= | 1 2 3 |.
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b) (2 points) Use matrix multiplication to check that the matrix vou found is
indeed AL
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¢) (5 points) Let A4, B, C be nxn matrices, with A and B invertible, which satisfy
the equation ABCB~! — B = A. Express C in terms of A and B. Show all your

work.
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3. (18 points) Recall that two n x n matrices A and B are said to commute, if
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(b) Let'A and I be two n x n matrices. Show that if A commutes with B and
Bis lftwer!,ible, then A commutes with B L.
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4. (17 points) Let 4 be an m x n matrix, b a non-zero vector in R”, 7, a solution of
the equation AT = b, and ¥j a solution of the equation AT = 0.

(a) Show that F; + I is a solution of the equation AT = E;
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(b) Let #; be another solution of the system AL = b. Show that Z» — #; is a
solution of the system AT = (. g o
P e,
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L (c) Let A be'the 2 x 2 matrix of the projection of R? onto a line L through the c J'_.)
1 =), origin and a non-zero vector b. Let 1 be a unit vector orthogonal to L. Draw
% 3~ M picture describing geqmetrically the set of solutions 7 of the system AT = b,
]T‘ W in terms of @ and b. Lhen use your ork aboveyto justify the picture in a
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5. (20 points) Let L be the line in R? through the origin and the vector 7 = ( Vlﬁ ) .

Recall that the reflection Ref;, : R? — R? is given by the formula
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(a) Use thef_formuh (1) to find the standard matrix 4 6? Ref.
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(b) Let T:R? — R? be the rotation of the plane about the origin I radians (i.e.,
60 degrees) counter-clockwise. Find the standard matrix B of the rotation
@ T. Hint: cos(n/3) = 1/2 and sin{7/3) = +/3/2.
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(c) Let S : R? — R? be the linear transformation given by S(%) = Refr(T (%))

(i.e., rotation followed by reflection). Express the standard matrix C of S in
terms of the matrices A of Ref; and B of T.
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(d) Use the expression in part 5¢ to compute the matrix C. Note: The answer is
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(e) Let L be the line through the origin and the vector 1 = ’%) The matrix

C in part 5d is the matrix of the reflection Ref; with respect to this new line
L. You need not prove this fact. Use this fact and your work above in order
to express the rotation T in terms of the reflections Refr and Re fz.l)fj.]

w5k k- Wi O, -
T(x) = Reﬁ?. {Rqﬁﬁw (X )] . Justify your answer! 7 SFR L{T(RJ

T N M (R EJ
M I: The mab of T i3,

B=AC
So T@=B7 =A"Cy = R, (Rep ) = i {’?ﬁ”&)}

f"#(/m'mff;




(15 pcrult 5) . E

I, 4
[a,} Is the vector ( 3 ) a linear combination of the vectors ( 2 ) and ( 3 )?
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Justify your answer!
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(b) Let A be a 4 x 3 matrix such that the system AT =

[ ]

solution.

1. What is the rank of 47 Justify your answer!
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ii. Let T : R® — R* be the linear transformation given by T(Z) = ATf. Is
the image of T equals the whole of B*? Justify your answer!
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