1. Let V be a vector space. Consider linearly independent vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ in a subspace H of V and vectors $\vec{w}_{1}, \vec{w}_{2}, \ldots \vec{w}_{q}$ that span H. Show that there is a basis of H that consists of all the \vec{v}_{i} and some of the \vec{w}_{j}. Hint: Use the Spanning Set Theorem 5 in section 4.3.
Consider the ordered set $\$=\left\{\vec{u}_{1}, \vec{u}_{d}, \ldots, \vec{u}_{p+q}\right\}$, where $\vec{u}_{i}=\vec{v}_{i}$, if $1 \leqslant i \leqslant p$, and $\vec{u}_{p+j}=\vec{w}_{j^{\prime}}, \quad 1 \leq j \leq q$. If the set $\left\{\vec{u}_{1}^{-1},, \vec{u}_{p+y}\right\}$ is not leneolly independent thew one \vec{u}_{k} is a lines combination of the proceed ding vectors $\vec{u}_{7}, \ldots \vec{u}_{k-1}$, for some $k>p\left(\sin c e, \vec{u}_{1}, \ldots, \vec{u}_{0}\right.$ is linearly independent. In that case we call \vec{u}_{k} a redundant vector and $H_{i}=$ Span $S=S p a n S \backslash\left\{\vec{u}_{k}\right\}$. Repeating

the procers with $s,\left\{\vec{u}_{k}\right\}$ until all redundant vectors were discarded we arrive at a linearly independent set $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}, \vec{u}_{i_{1}}, \ldots, \vec{u}_{i_{m}}\right\}$, with $p<i_{A} \leqslant p+q$ which spans. H. It is thus a basis for It of the closired property, since $u_{i_{t}}=w_{\left(i_{t}-p\right) \text {. }}$
2. Let G and H be subspaces of a vector space V.
(a) The intersection $G \cap H$ is the subset of V consisting of vectors that belong to both G and H. Show that $G \cap H$ is a subspace of V.
(1) GกH contains $\overrightarrow{0}$, since both G and H do being subspaces,
(2) Let \vec{u}, \vec{v} be vectors in $G \cap H$, Then $\vec{u}+\vec{v}$ belong to G, since G is a subspace, and to it, for the same reason, hence to GOH,
(3) Let \vec{u}, be a vector in GRIt, and c a scalds. Then $c \vec{u}$ belong to G, since G is a subspace, and to it, for the same reason, hence to GOH.
(b) The sum $G+H$ is the subset of V consisting of sums of vectors $\vec{g}+\vec{h}$, where \vec{g} belongs to G and \vec{h} belongs to H. Show that $G+H$ is a subspace of V.
(1) $\vec{O}=\vec{O}+\vec{O}$, and \vec{O} belongs t G and to H_{A}. Hence, \vec{O} belongs $t_{s} G+H_{1}$,
(2) Let \vec{u}, \vec{v} be vectors, in $G+H$. Then $\vec{u}=\vec{g}_{1}^{2}+\vec{h}_{1}$ and $\vec{v}=\vec{g}+\overrightarrow{h_{2}}$, for \vec{g}_{i} in G and \vec{h}_{i} in H, $i=1,2$. So $\vec{u}+\vec{v}=\left(\vec{g}_{1}+\vec{g}_{2}\right)+\left(\overrightarrow{h_{1}}+\overrightarrow{h_{2}}\right)$ and $\vec{g}_{1}+\vec{y}_{2}$ belmeps G, since G is a subspace, and $\vec{h}_{1}+\vec{h}_{y}$ belingster H for the same reason, Hence $\vec{u}+\vec{v}$ belongs to $G+H$.
(3) Let $\vec{u}=\vec{g}+\vec{b}$ be a vector belongs tiv $G+H_{0}$ in G and $\vec{h} \rightarrow$ in $H f$, and let c be a scalor. Thenar $c \vec{g}$ belong $t \underset{\rightarrow}{G+} G, c \vec{h}$ belomps te H, smice G and H are subspace. Thus $c \vec{u}=c \vec{y}+c \vec{h}$ belongs $A G H H$.
(c) Let $\left\{v_{1}, \ldots, v_{p}\right\}$ be a linearly independent subset of V and k an integer satisfying $1 \leq k<p$. Show that
is the zero subspace of V.
$\underbrace{\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right.}_{G}\}$$\cap \underbrace{\operatorname{span}\left\{v_{k+1}, \ldots, v_{\boldsymbol{p}}-1, v_{p}\right\}}_{H}$
We already know that GSI is a subspace, by Port (b), suppose \vec{V} is in GOAt, then $\vec{v}=c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}$ and

$$
\vec{v}=c_{k+1} \vec{v}_{k+2}++c_{p} \vec{v}_{p} \text {. so } \quad \vec{o}=\vec{v}-\vec{v}=c_{2} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}-c_{k+1} \vec{v}_{k+1}=\cdots c_{p} \vec{v}_{p}
$$

Hence, $c_{i}=0$, for $1 \leqslant i \leq p, \operatorname{sim}\left(e \quad\left\{v_{1}, \ldots, v_{p}\right\}\right.$ is liverly independent. So $\vec{V}=\overrightarrow{0}$.
$x_{1} x_{2} x_{3} x_{4} \quad x_{1}, x_{4}$ free
(d) Let $A=\left(\begin{array}{cccc}0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. Find a basis for $\operatorname{Null}(A), \operatorname{Col}(A), \operatorname{Null}(A) \cap$ $\operatorname{Col}(A)$, and $\operatorname{Null}(A)+\operatorname{Col}(A)$.
Null (A): $:\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{l}x_{1} \\ x_{4} \\ -x_{4} \\ x_{4}\end{array}\right)=x_{v_{1}}^{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)}+\underbrace{\left(\begin{array}{c}0 \\ 1 \\ 1 \\ -1 \\ 1\end{array}\right)}_{V_{2}}$
$\left\{v_{1}, v_{2}\right\}$ is a basis for ${ }_{1} \operatorname{Null}(A)_{1}$.
The pivot columns (and and third) of A are a basis for $\operatorname{col}(A)$, manaly $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$
$\operatorname{Null}(A) \cap \operatorname{Col}(A)$: If \vec{V} is in ${ }^{V_{1}} \operatorname{Null}(A) \cap \operatorname{Col}(A)$, then $\vec{v}=a_{1} V_{1}+a_{2} v_{2}$ and $\vec{v}=b_{1} v_{1}+b_{3} v_{3}$.
So $\overrightarrow{0}=\left(a_{1}-b_{1}\right) \vec{v}_{1}+a_{2} \vec{v}_{2}+b_{3} \vec{v}_{3}$. But $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent, so $a_{1}=b_{1}, a_{2}=0$, and $b_{3}=0$, and so $\vec{v}=a_{1} v_{1}$, belongs to span $\left\{v_{7}\right\}$, So $\left\{v_{1}\right\}$ is a boris for $\operatorname{Null}(A) \cap \operatorname{Col}(A)$, $\operatorname{Null}(A)+\operatorname{Col}(A): L$ et $\vec{v}=\vec{u}+\vec{\omega}$, where \vec{u} is in $\operatorname{Null}(A)$ and $\overrightarrow{\vec{w}}$ is in col (t). Then $\vec{u}=3 a_{1} v_{1}+a_{2} v_{2}$ and $\vec{\omega}=b_{1} v_{1}+b_{3} v_{3}$, So $\vec{v}=\left(a_{1}+b_{1}\right) \vec{v}_{1}+a_{2} \vec{v}_{2}+b_{3} \vec{v}_{3}$. So \vec{v} belongs to spa $\left\{v_{1}, v_{2}, v_{3}\right\}$, conversely, if \vec{v} belongs to span $\left\{v_{1}, v_{2}, v_{3}\right\}$ then $\vec{v}=\left(c_{1} v_{1}+c_{2} v_{2}\right)+c_{3} v_{3}$, with $\left(c_{1} v_{1}+c_{2} v_{2}\right)$ in $\left.N_{\text {uh }} \mid A\right)$ and $c_{3} v_{3}$ in $c_{0}(A)$ so \vec{V} is is Null $(A)+C_{n}(A)$. Thar $N \operatorname{Null}(A)+\operatorname{Col}(A)=\operatorname{span}\left\{v_{1}, v_{1}, v\right\}$, $\sin c e\left\{v_{T}, v_{\alpha}, v_{3}\right\}$ is linearly independents, it is a bars for vul($(t)+\operatorname{Col}(A) \mid$.
3. Let G and H be finite dimensional subspaces of a vector space V. Show that
(t)

$$
\operatorname{dim}(G)+\operatorname{dim}(H)=\operatorname{dim}(G \cap H)+\operatorname{dim}(G+H)
$$

Hint: Let $\vec{v}_{1}, \ldots \vec{v}_{m}$ be a basis of $G \cap H$. Using problem 1 extend it to a basis $\vec{v}_{1}, \ldots \vec{v}_{m}, \vec{g}_{1}, \ldots \vec{g}_{p}$ of G and a basis $\vec{v}_{1}, \ldots, \vec{v}_{m}, \vec{h}_{1}, \ldots, \vec{h}_{q}$ of H. Show that
*)

$$
\vec{v}_{1}, \ldots, \vec{v}_{m}, \vec{g}_{1}, \ldots, \vec{g}_{p}, \vec{h}_{1}, \ldots, \vec{h}_{q}
$$

is a basis of $G+H$. Hint: For the proof of linear independence, assume that $a_{1} \vec{v}_{1}+\ldots+a_{m} \vec{v}_{m}+b_{1} \vec{g}_{1}+\ldots+b_{p} \vec{g}_{p}+c_{1} \vec{h}_{1}+\ldots+c_{q} \vec{h}_{q} \stackrel{\text { VD }}{=} 0$. Show first that $c_{1} \vec{h}_{1}+\ldots+c_{q} \vec{h}_{q}$ belongs to $G \cap H$ and use it to prove that $b_{j}=0,1 \leq j \leq p$.
If (x) is a basis for $G+H$, then $\operatorname{dim}(G+H)=m+p+q$
$\operatorname{dmi}(G)=m+p$ $\operatorname{dmi}(H)=m+q$
Proof that
the set $(*)$ is linearly independent: divi(GoH) $=m$, so Er (t) holds.
Assume $+\underset{y}{ }+$. Then $c_{1} \vec{h}_{1}+\cdots+c_{y} \vec{h}$ both belongs to it and equal to $-\left(a_{1} \vec{v}_{1}+a_{m} \vec{v}_{m}+b_{1} \vec{g}_{1}+\cdots+b_{p} \vec{g}_{p}\right)$ which belongs to
G. Hence, $c_{1} \vec{h}_{1}++c_{q} \vec{h}_{q}$ belongs to GחH and is thus a liner comb $d_{1} \vec{v}_{1}+\cdots+d_{m} \vec{v}_{\text {mi }}$ afuits bosio. So, $\vec{O}=$ left h and side of $* x=\left(a_{1}+d_{1}\right) \vec{v}_{1}+\cdots+\left(a_{m}+d_{m}\right) \vec{v}_{m}+b_{1} \vec{g}_{1}+\cdots+b_{p} \vec{g}_{p}$, $H \operatorname{lnce}, b_{i}=0$. bor $1 \leq i \leqslant P_{a .}$. Interchanging the rales of G and H we get that $\frac{\operatorname{sincr} v_{1}, j v_{m}, \overrightarrow{g_{1}}-v \vec{g}_{r} \text { is linear }}{C_{i}=0, ~ p r} 1 \leqslant l \leqslant 0$. $H \ln \left(e, \quad 0=a_{1} \vec{v}_{1}+\cdots a_{m} \forall_{m}\right.$. So $a_{i}=0$, for $0 \leq i \leq m$,
Since $\left\{v_{1}, \ldots, v_{m}\right\}$ is leneorly independent.
Proof that (*) spans: Let $v \in G_{G} G_{G}$. Then $v=g+h$, where g is is G and h is is H. So $\quad g=\sum_{i=1}^{m} a_{i} V_{i}+\sum_{i=1}^{p} b_{i} g_{i}$ and $h=\sum_{i=1}^{m} c_{i} V_{i}+\sum_{i=1}^{q} d_{i} h_{i}$, Thus $V=\sum_{i=1}^{m}\left(a_{i}+c_{i}\right) v_{i}+\sum_{i=1}^{p} b_{i} g_{i}+\sum_{i=1}^{q} d_{i} h_{i} \quad$ is a liner combination of the vectors in x.
4. If G and H are subspaces of \mathbb{R}^{10}, with $\operatorname{dim}(G)=6$ and $\operatorname{dim}(H)=7$, what are the possible dimensions of $G \cap H$? Hint: Use problem 3 .

So $\operatorname{dim}(G \cap H) \geqslant 13-10=3$.
$G \cap H$ is a subspace of G, so $\operatorname{din}(G \cap H) \leqslant 6$, We get that $3 \leqslant \operatorname{dim}(G \cap H) \leqslant 6$. We show next that all bour possibilities are possible: Let $\left\{e_{1},, e_{10}\right\}$ be the standard basis of \mathbb{R}^{10} and let $H=\operatorname{span}\left\{e_{1},-e_{7}\right\}$.
If $G=\operatorname{Spm}\left\{e_{1},-e_{6}\right\}$ then $G \cap H=G$ and $\operatorname{dri}(G \cap H)=6$,
If $G=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{8}\right\}$, then $G \cap H=\operatorname{spm}\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$
and $\operatorname{din}(G \cap H)=5$.
If $G=\operatorname{spam}\left\{e_{1}, e_{\alpha}, e_{3}, e_{4}, e_{8}, e_{g}\right\}$, then $G O H=\operatorname{spm}\left\{e_{1}, e_{\alpha}, e_{3}, e, 4\right\}$ and $\operatorname{dmi}(G \cap H)=4$.
If $G=\operatorname{spm}\left\{e_{1}, e_{2}, e_{3}, e_{8}, e_{g}, e_{10}\right\}$, then
$G \cap H=\operatorname{spm}\left\{e_{1}, e_{\alpha}, e_{3}\right\} \quad$ and $\operatorname{ar}(G \cap H)=3$.

5 Let $T: V \rightarrow W$ be a linear transformation, $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for V, and $\mathcal{C}=\left\{w_{1}, \ldots, w_{m}\right\}$ a basis for W. Let []$_{\mathcal{C}}: W \rightarrow \mathbb{R}^{m}$ be the linear coordinate transformation of Theorem 8 in Section 4.4 of our textbook. Let $S: \mathbb{R}^{n} \rightarrow V$ be the linear transformation sending the vector $\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right)$ to $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$. Note that S is the inverse of []$_{\mathcal{B}}$.
(a) By definition, the composite linear transformation [] $\circ \circ T \circ S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps \vec{x} to $[T(S(\vec{x}))]_{\mathcal{C}}$. It fits in the diagram:

the standard matrix of []$_{\mathcal{C}} \circ T \circ S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the $m \times n$ matrix

$$
A=\left(\left[T\left(v_{1}\right)\right]_{\mathcal{C}}\left[T\left(v_{2}\right)\right]_{\mathcal{C}} \ldots\left[T\left(v_{n}\right)\right]_{\mathcal{C}}\right)
$$

which j-th column is $\left[T\left(v_{j}\right)\right]_{\mathcal{C}}$. Hint: Compute A column by column. Note: The matrix A is considered in Theorem 15 of Section 4.7 of our textbook only in the special case where $V=W$. When $V=W$ and $\mathcal{B}=\mathcal{C}$ we will call A the \mathcal{B}-matrix of T. column of A. We know that \vec{x} in \mathbb{R}^{n} by definition column of A_{0}. We row that $\vec{x}^{\text {in }} \mathbb{R}^{n}$, by definition
$A \vec{x}=[T(B(\vec{x}))]_{e}$, for every
of A. Let \vec{e}_{j} be the j-th column of I, the $n \times m$ identity

$$
\overrightarrow{a_{j}}=A \vec{e}_{j}=[T(\underbrace{\left.\left.S\left(\vec{e}_{j}\right)\right)\right]_{e}=\left[T\left(\vec{v}_{j}\right)\right]_{e^{\prime}}, ~}_{\vec{V}_{j^{\prime}}}
$$

(b) Show that the coordinate linear transformation []$_{\mathcal{B}}$ maps $\operatorname{ker}(T)$ onto $N u l l(A)$. In other words, show that if $T(v)=0$, then $[v]_{\mathcal{B}}$ belongs to $N u l l(A)$ and if $A \vec{x}=\overrightarrow{0}$, then $\vec{x}=[v]_{\mathcal{B}}$, for some vector v in $\operatorname{ker}(T)$. Conclude that $\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim}(\operatorname{Null}(A))$.
The equation $A \vec{x}=[T(S(\vec{x}))]_{e}$ for all \vec{x} in \mathbb{R}^{n} implies that $A[\vec{v}]_{B}^{(t)}[T(\vec{v})]_{e}$, for all $x_{\vec{v}}$ in V_{0} Indeed, tare $\vec{X}=\{\vec{v}\rangle_{B}$ and use the fact that $S\left([\vec{v}]_{\mathbb{B}}\right)=\vec{v}_{\text {。 }}$
If \vec{v} is in $\operatorname{rer}(T)$, then $T(\vec{v})=\overrightarrow{0}$, so $[T(\vec{v})]_{e}=\overrightarrow{0}$, sO $A[\vec{v}]_{B}=\overrightarrow{0}$, by equation (t), so $[\vec{v}\}_{B}$ is in $\operatorname{Null}(A)$,
Let $\vec{x}=\left(\begin{array}{l}x_{1} \\ 1 \\ x_{m}\end{array}\right)$ be in $\operatorname{Null}(A)$, and set $\vec{v}=x_{1} \vec{v}_{1}++x_{m} \vec{v}_{m}$, so that $[\vec{v}]=\vec{x}$. B
Then $[T(\vec{v})]_{e} \stackrel{{ }^{b y}(t)}{=} A[\vec{v}]_{B}=A \vec{r}=\overrightarrow{0}$, Hence, the e-coondinte vector of $T(\vec{v})$ is zero. So $T(\vec{v})=\overrightarrow{0}$, so \vec{V} is in $\operatorname{le} \lambda(T)$ and $\vec{x}=[v]_{B}$, Hence []$_{B}$ maps ear (T) ONTO Null (s) Let $F: \operatorname{Rer}(T) \rightarrow \operatorname{Null}(A)$ be given by $F(\vec{v})=[\vec{v}]_{B}$. Then F is a linear transformation, $\sin c e[]_{B}$ is, F is ore-to-one, $\operatorname{since}[]_{B}$ is, and F is onto, as was shawn above.
So F trunstales every Limeor algebra statement on err (t) to one on Null (A) (see the paragraph in $\sec 4.4$ before Example 5 in the text). In pasticulos, F maps a liveorly independent set to a lereorly independent set. Furthermore, F maps a set beat spans er (T) \mathbb{G} a set that spans $N \operatorname{Nul}(A)$. So if $\left\{u_{1},, u_{k}\right\}$ is a basis for $\operatorname{ror}(T)$, then

(c) Show that []$_{\mathcal{C}}$ maps the image $\operatorname{Im}(T)$ onto $\operatorname{Gol}(A)$. Conclude that $\operatorname{dim}(\operatorname{Im}(T))=$ $\operatorname{dim}(\operatorname{Col}(A))$.
Let $\vec{\omega}$ be a vector in $\operatorname{Im}(T)=\{T(v)$ such that \vec{v} is in $V\}$, Then $\vec{w}=T(\vec{v})$ for some \vec{v} is \vec{v}. So
$[w]_{e}=[T(\vec{v})]_{C}=A[v]_{B}$. Now $A \vec{x}$ is in $\operatorname{col}(A)$ for every \vec{x} in \mathbb{R}^{n}, Hence $[\omega\}_{e}$ is in $\operatorname{Col}(\pi)$. conversely, let \vec{y} be a vector in $\operatorname{col}(A), \vec{y}=\sum_{j=1}^{n} x_{i} \vec{a}_{j}$ Then $\vec{y}=A \vec{x}$, for $\vec{x}=\binom{x_{1}}{\dot{x}_{n}}$ in \mathbb{R}^{n}. So

$$
\vec{y}=A\left[\left.\sum_{j=1}^{n} x_{j} \vec{v}_{j}\right|_{B}=\left[\eta\left(\varepsilon_{j} \vec{j}_{j}\right)\right]_{C},\right. \text { so }
$$

$\vec{y}=[\vec{w}]_{C}$ where $\vec{\omega}=T\left(\sum_{j=1}^{n} x_{j} \vec{v}\right)$ is iv $I_{m}(T)$,
Hence []$_{e}$ maps $\operatorname{Im}(T)$ ants $\operatorname{Col}(A)$.
Let $F: \operatorname{Im}(T) \rightarrow \operatorname{Col}(A)$ be given by $F(\vec{y})=[\vec{y}]_{e}$. Then F is a one-ts-one and onto linear transformation. Hence, $\operatorname{dem} \operatorname{Im}(T)=\operatorname{dim}(a l(A)$, by the argument in part b:
(d) Generalize the Rank-Nullity Theorem by proving the following equality $\operatorname{dim}(\operatorname{Im}(T))+\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim}(V)$.

$$
\operatorname{din}(\operatorname{Im}(T))+\operatorname{dan}(\operatorname{res}(T))={ }_{10} \operatorname{dimi}(\operatorname{Col}(A))+\operatorname{din}(\operatorname{Null}(A))=
$$ by the RankNullity Theorem

$$
=n=\operatorname{dem}(V)_{0}
$$ Let $M_{2 \times 2}$ be the vector space of 2×2 matrices (with the usual scalar multiplication and addition of matrices). Consider the following basis of $M_{2 \times 2}$.

$$
\mathcal{B}=\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),(\underbrace{0}_{E_{11}} \begin{array}{l}
1 \\
0
\end{array}),(\underbrace{0}_{E_{21}} \begin{array}{l}
0 \\
1
\end{array}),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\} .
$$

Let $C=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$. Let $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ be given by $T(B)=B C-C B$.
(a) Show that T is a linear transformation. (1) Let B, M be 2×2 matrices

$$
T(B+M)=(B+M) C-C(B+M)=(B C-C B)+(M C-C M)=
$$

$$
=T(B)+T(M),
$$

(2) Let λ be a scales and B a 2×2 matrix. Then

$$
T(\lambda B)=(\lambda B) Q-C(\lambda B)=\lambda[B C-C B]=\lambda T(B) \text {. }
$$

(b) Compute the \mathcal{B}-matrix of T (as in Problem 8, but with $V=W=M_{2 \times 2}$ and take \mathcal{C} to be equal to the specific basis \mathcal{B} given above).
$\mathbb{R}^{4} \rightarrow \mathbb{M}$ Met by A the standard matrix of ,
Part Ba Mut by A the standard matrix of;

$$
\begin{aligned}
& \left.\vec{a}_{1}=\left[T\left(E_{11}\right)\right]_{B}=\left[\begin{array}{cc}
E_{11} & C \\
(10 \\
1 & 0 \\
0
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right), C E_{11}\right]_{B}=[\underbrace{\left(\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right)}_{\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)} \underset{B}{ }=\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right) \\
& \overrightarrow{a_{2}}=\left[T\left(E_{12}\right)\right]_{B}=[\underbrace{E_{12} C-\underbrace{E_{B}}_{\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)}}_{\left(\begin{array}{cc}
1 & 2 \\
0 & e
\end{array}\right)}=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]_{B} \xrightarrow{-1} \stackrel{(11}{ }=\left(\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { We will show that }
\end{aligned}
$$

Interchange R_{1} and R_{g}
(c) Use part 8 b to find a basis for $\operatorname{ker}(T)$. (It should consist of 2×2 matrices, not vectors in \mathbb{R}^{4}).
$x_{3} x_{4}$ are Grew

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-x_{3}+x_{4} \\
x_{3} \\
x_{3} \\
x_{W}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
1 \\
0 \\
0 \\
1
\end{array}\right) \\
& \text { Add }-R_{2} \operatorname{tor} R_{1} \\
& v_{1}=\underbrace{\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right)}_{C-2 I}]_{B^{\prime}}, \quad v_{2}=[\underbrace{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)}_{I}]_{B} . \quad \text { So } \quad\{C-2 I, I\} \text { is }
\end{aligned}
$$

(d) Use part Bc to find a basis of $\operatorname{Im}(T)$.

Baris for $\operatorname{Col}(A)$: The two pivot columns, of A are a bans,

$$
\vec{a}_{1}=\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)=\left[\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right]_{B}, \quad \vec{a}_{2}=\left(\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right)=\left[\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)\right]_{B}^{\hat{a}_{1} \text { and } \overrightarrow{a_{2}}}
$$

So, $\left\{\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)\right\}$ is a bares for $I_{m}(T)$.

$$
T\left(E_{11}\right) \quad T\left(E_{1 \alpha}\right)
$$

