1. Let V be a vector space. Consider linearly independent vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in a subspace H of V and vectors $\vec{w}_1, \vec{w}_2, \ldots \vec{w}_q$ that span H. Show that there is a basis of H that consists of all the \vec{v}_i and some of the \vec{w}_j . Hint: Use the Spanning Set Theorem 5 in section 4.3.

Consider the ordered set \$= { u2, u2, - , up+q3; where $\vec{u}_i = \vec{v}_i$, if $1 \le i \le P$, and $\vec{u}_{p+j} = \vec{w}_j$, $1 \le j$ If the set { \vec{u}_1, \vec{u}_{p+g}} is not linearly independent then one \vec{u}_K is a linear combination of the preceeding vectors \vec{u}_1 , \vec{u}_{K-1} , for some K > P (since \vec{u}_1 , \vec{v}_p linearly independent, In that case we call un Medundent vector and Haspan & = Span S \ {uk}. Repeating Since & Spanning Contains {v1,-, 18p3 | Set Thedrem the process with S. & U'x & until all redundent vectors were discarded we arrive at a linearly independent set { \var{u}_1, -, \var{u}_p, \var{u}_{i_1}, -, \var{u}_{i_m} \} with PKIL & P+9 which spuns H. It is thus a baris for It of the derived property, since $u_i = \omega_i - P$.

- 2. Let G and H be subspaces of a vector space V.
 - (a) The intersection $G \cap H$ is the subset of V consisting of vectors that belong to both G and H. Show that $G \cap H$ is a subspace of V.
- (1) GNH contains 3, since both G and H do being subspaces,
- (2) Let , i be vectors in GOH, Then û+v belong to G, since G is a subspace, and to It, for the same reason, hence to Got,
- Let is, be a vector in GOH, and c as color. Then cu belong to G, since G is a subspace, and to It, for the Same neason, hence to GNH.
 - (b) The sum G + H is the subset of V consisting of sums of vectors $\vec{g} + h$, where \vec{q} belongs to G and h belongs to H. Show that G+H is a subspace
- and of belongs to G and to H. Hence of belongs to G+H.
- (a) Let \vec{u}, \vec{v} be vectors in G+H, Then $\vec{u} = \vec{g}_1 + h_1$ and $\vec{v} = \vec{g}_2 + \vec{h}_2$,
 - for g, in G and hi ii It, i=1,2, 50
- is a subspace, and $\vec{h}_1 + \vec{h}_2$ belongs to \vec{G} , since \vec{G} is a subspace, and $\vec{h}_1 + \vec{h}_2$ belongs to \vec{H} for the same reason. Hence $\vec{u} + \vec{v}$ belongs to $\vec{G} + \vec{H}$.

 (3) Let $\vec{u} = \vec{g} + \vec{h}$ be a vector \vec{u} and $\vec{G} + \vec{H}$, with \vec{g} \vec{u} \vec{G} and \vec{h} \vec{u} \vec{H} , and let \vec{G} be a scalor. Then \vec{G} belongs to \vec{G} , \vec{G} belongs to \vec{G} , \vec{G} belongs to \vec{G} , \vec{G} \vec{G} \vec{G} \vec{G} .
 - to H, smice G and H are subspaced. Thus cil = cg'+ ch' belongs to GtH. (c) Let $\{v_1, \ldots, v_p\}$ be a linearly independent subset of V and k an integer sat-

isfying $1 \leq k < p$. Show that $\operatorname{span}\{v_1, v_2, \dots, v_k\} \cap \operatorname{span}\{v_{k+1}, \dots, v_{p-1}, v_p\}$ is the zero subspace of V.

We already know that GDH is a subspace, by Port (b). Suppose Vision GNH. Then $\vec{V} = C_1\vec{V}_1 + + + C_K\vec{V}_K$ and V = CK+1 K+1 + + CPVP . SO 3= V-V= CLV1+ + CKVN-CK+VK+1 Hence, ci=0, for 151 5P, since {v1,-10} is

linearly in dependent. So V=00

X1 X0 X3 X4 , X2, X4 Bree (d) Let $A = \begin{pmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Find a basis for Null(A), Col(A), $Null(A) \cap$ $\frac{\text{Null }(A):}{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}} = \begin{pmatrix} x_1 \\ x_4 \\ x_4 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ ¿v_⊥, v₂} is a baris for ^{v₁} Null (A). The pivot columns (2nd and third) of A are baris for Col(A), manely $\begin{cases} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \end{cases}$ $\begin{cases} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \end{cases}$ Null(A) n Col(A): If V is in Null(A) n Col(A), then $\vec{V} = a_1 V_1 + a_2 V_3$ and $\vec{V} = b_1 V_1 + b_3 V_3$, So $\vec{o} = (a_1 - b_1)\vec{v_1} + a_3\vec{v_2} + b_3\vec{v_3}$. But $\{v_1, v_2, v_3\}$ to the set linearly independent. So $a_1 = b_1$, $a_2 = 0$, and $b_3 = 0$) and so $\vec{v} = a_1 v_1$ belongs to span $\{v_4\}$, so {vi} is a borns for Null(A) (Col(A), Null(A) + (ol(A): Let V = u + w, where u is in Null(A) and \vec{w} is in col(t), Then $\vec{u} = 3 a_1 v_1 + a_2 v_2$ and $\vec{w} = b_1 v_1 + b_3 v_3$, SO V = (a1+b2) V1 + a2 V3 + b3 V3, SO V belongs to Spm? 41/3/35 Conversely, if \vec{v} be longs to span $\{v_1, v_2, v_3\}$ then $\vec{v} = (c_1v_1 + c_2v_2) + c_3v_3, \quad with \quad (c_2v_1 + c_2v_2) \quad \text{in } Null(A) \quad \text{and} \quad c_3v_3 \quad \text{in } Cod(A)$ $50 \quad \vec{v} \quad \text{is} \quad \text{in} \quad \text{Null}(A) + Col(A) = \text{span} \{v_1, v_1, v_2\}$ $\sin ce \quad \{v_1, v_2, v_3\} \quad \text{is} \quad \text{linearly} \quad \text{independent}; \quad \text{it is a basis for } Null(A) + (ol(A)).$ 3. Let G and H be finite dimensional subspaces of a vector space V. Show that

$$\dim(G) + \dim(H) = \dim(G \cap H) + \dim(G + H).$$

Hint: Let $\vec{v}_1, \ldots \vec{v}_m$ be a basis of $G \cap H$. Using problem 1 extend it to a basis $\vec{v}_1, \ldots \vec{v}_m, \vec{g}_1, \ldots \vec{g}_p$ of G and a basis $\vec{v}_1, \ldots, \vec{v}_m, \vec{h}_1, \ldots, \vec{h}_q$ of H. Show that

$$\vec{v}_1,\ldots,\vec{v}_m,\vec{g}_1,\ldots,\vec{g}_p,\vec{h}_1,\ldots,\vec{h}_q$$

is a basis of G+H. Hint: For the proof of linear independence, assume that $a_1\vec{v}_1 + \ldots + a_m\vec{v}_m + b_1\vec{g}_1 + \ldots + b_p\vec{g}_p + c_1\vec{h}_1 + \ldots + c_q\vec{h}_q = 0$. Show first that $c_1\vec{h}_1 + \ldots + c_q\vec{h}_q$ belongs to $G \cap H$ and use it to prove that $b_j = 0$, $1 \leq j \leq p$.

If @ is a baris for G+H, then dim (G+H) = M+p+q 1 dui (G) = M+P Proof that is lenearly independent: dir (GOH) = m, so Ey (+) holds.

Assume the set & is lenearly independent: Assume (2). Then city + cgh both belongs to It and equal to - (a1v, + + am v, + b1g, + + bpgp) which belongs to G. Hence, Ging + + cging belongs to GOH and is thus a linear comb d_ v, + + dm vm aprito baris, SO 0 = left hand side of (x) = (a1+d1) v1+ + (am+dm) vm + b1 91+ - + bp 9p Hence, by=0, for 1 < i < P . Interchanging the roles of Gard H we get that Since vi, ivm, Fir - Do 1 < i < E. Hence, $\partial = a_1 \vec{v}_1 + + a_m \vec{v}_m$, so a = 0, but $0 \le i \le m$, Swice {v1,-, vm} is linearly independent. G+H. Then v=g+h, where g is is 6 and Proof that & spano: Let ve and h = E Civi + E dihi, h is in H. So $g = \sum_{i=1}^{m} a_i V_i + \sum_{i=1}^{m} a_i V_i$ Thus $V = \sum_{i=1}^{M} (a_i + c_i) V_i + \sum_{i=1}^{P} b_i g_i + \sum_{i=1}^{N} d_i h_i$ is a linear Combination of the vectors in &.

4. If G and H are subspaces of \mathbb{R}^{10} , with $\dim(G) = 6$ and $\dim(H) = 7$, what are the possible dimensions of $G \cap H$? Hint: Use problem 3.

$$\dim(G) + \dim(H) = \dim(G \cap H) + \dim(G + H)$$

$$\dim(G) + \dim(H) = \dim(G \cap H) + \dim(G + H)$$

$$\dim(G) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G \cap H) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G \cap H) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G \cap H) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G \cap H) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G \cap H) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G \cap H) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G \cap H) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G \cap H) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G \cap H) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G \cap H) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G \cap H) + \dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G \cap H) + \dim(G \cap H)$$

$$\dim(G$$

SO dim (GNH) > 13-10=3.

GNH is a subspace of G, SO dim (GNH) < 6,

We get that 3 < dim (GNH) < 6. We show next

that all Bown possibilities are possible:
Let {e1, - 100} be the standard basis of IR,

and let H = Span {e1, -, 00} then GNH = G and dim (GNH) = 6,

If G = Span {e1, -, 00} then GNH = Span {e1, 02, 03, 04, 05}

and dim (GNH) = 5.

If G = Span {e1, 02, 03, 04, 00, 00} then GNH = Span {e1, 02, 03, 04, 05}

and dim (GNH) = 4.

If G = Span {e1, 02, 03, 00, 00, 00} then GNH = Span {e1, 02, 03, 00}

GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00, 00}

Then GNH = Span {e1, 02, 03, 00, 00}

The GNH = Span {e1, 02, 03, 00, 00}

The GNH = Span {e1, 02, 03, 00, 00}

The GNH = Span {e1, 02, 03, 00, 00}

The GNH = Span {e1, 02, 03, 00, 00}

The GNH = Span {e1, 02, 00, 00}

QED

Let $T: V \to W$ be a linear transformation, $\mathcal{B} = \{v_1, \dots, v_n\}$ a basis for V, and $\mathcal{C} = \{w_1, \dots, w_m\}$ a basis for W. Let $[\]_{\mathcal{C}}: W \to \mathbb{R}^m$ be the linear coordinate transformation of Theorem 8 in Section 4.4 of our textbook. Let $S: \mathbb{R}^n \to V$ be

the linear transformation sending the vector $\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$ to $c_1v_1 + c_2v_2 + \ldots + c_nv_n$.

Note that S is the inverse of $[\]_{\mathcal{B}}$.

(a) By definition, the composite linear transformation $[\]_{\mathcal{C}} \circ T \circ S : \mathbb{R}^n \to \mathbb{R}^m$ maps \vec{x} to $[T(S(\vec{x}))]_{\mathcal{C}}$. It fits in the diagram: $V \xrightarrow{T} W$ Show that $S \uparrow \downarrow [\]_{\mathcal{C}} \downarrow [\]_{\mathcal{C}}$

the standard matrix of $[\]_{\mathcal{C}}\circ T\circ S:\mathbb{R}^n\to\mathbb{R}^m$ is the $m\times n$ matrix

$$A = ([T(v_1)]_{\mathcal{C}}[T(v_2)]_{\mathcal{C}} \dots [T(v_n)]_{\mathcal{C}}),$$

which j-th column is $[T(v_j)]_{\mathcal{C}}$. Hint: Compute A column by column. Note: The matrix A is considered in Theorem 15 of Section 4.7 of our textbook only in the special case where V = W. When V = W and $\mathcal{B} = \mathcal{C}$ we will call A the \mathcal{B} -matrix of T.

Write $A = (\vec{a}_1 \vec{a}_3 - \vec{a}_m)$ where \vec{a}_j is the j-th column of A. We know that $\vec{a}_j = [T(s(\vec{s}_j))]_e$, for every $\vec{x}_j = [T(s(\vec{s}_j))]_e$, be the j-th column of $\vec{a}_j = A\vec{e}_j = [T(s(\vec{s}_j))]_e = [T(s(\vec{s}_j))]_e$

Null(A). In other words, show that if T(v) = 0, then $|v|_{\mathcal{B}}$ belongs to Null(A) and if $A\vec{x} = 0$, then $\vec{x} = [v]_{\mathcal{B}}$, for some vector v in $\ker(T)$. The equation $A\vec{x} = [T(S(\vec{x}))]e$ for all \vec{x} in IR^{n} implies that A [v]B [T(v)]e, for all v' in V. Indeed, take $\vec{X} = [\vec{v}]_B$ and we the fact that $S([\vec{v}]_D) = \vec{v}$ S([V]B) = V. If \vec{v} is in her(\vec{v}), then $T(\vec{v}) = \vec{o}$, so $[T(\vec{v})]_e =$ Let $\vec{x} = \begin{pmatrix} x_1 \\ x_m \end{pmatrix}$ be in Null(A), tand set $\vec{v} = x_1 \vec{v}_1 + x_n \vec{v}_n$, so that $[\vec{v}] = \vec{x}$. Then $[T(\vec{v})]_e \stackrel{\text{by}}{=} A [\vec{v}]_B = A \vec{v} = \vec{o}$, Hence, the e-coordinate vector of $T(\vec{v})$ is zero. So $T(\vec{v}) = \vec{O}$, So \vec{V} is in for(T)and == IV3B, Hence []B maps Ser(T) ONTO Null) Lettet F: Per(T) -> Null(A) be given by F(V) = [v]B. Then F is a linear transformation, suice [] B is, F is one-to-one, since [] is and F is onto, as was shawn above.

So F trunstales every Linear algebra statement on Enti)
to one on Null(1) (see the paragraph in Sec 4.4 before Example 5 in the text). In particular, F maps a linearly independent set to a linearly independent set, Furthermore, F maps a set that spans her(T) to a set that spans Nucles. So if {uy, , ug} is a baris for her(T), then { [u,]B, , [u,]B} is a baris for Nucles). Thus dim(res(T)) = dim(WullA)

(b) Show that the coordinate linear transformation $[\]_{\mathcal{B}}$ maps $\ker(T)$ onto

EJB J ILLE
IRM > COL(A) (c) Show that $[\]_{\mathcal{C}}$ maps the image Im(T) onto Gol(A). Conclude that $\dim(Im(T))=$ Let is be a vector in Im (T) = {T(v) such that I is in V} Then $\vec{w} = T(\vec{v})$ for some \vec{v} in \vec{v} . So [W] = [T(V)] = A [V]B - NOW AX is in Col(A) for every \vec{x} in \mathbb{R}^n , Hence $\text{Iw}_{\mathcal{C}}$ is ni Col(A), $\vec{y} = \sum_{i=1}^{n} \vec{a}_i$ Conversely, let \vec{y} be a vector in Col(A), $\vec{y} = \sum_{i=1}^{n} \vec{a}_i$. Then $\vec{y} = A\vec{x}$, for $\vec{x} = \binom{x_1}{x_n}$ in \mathbb{R}^n . So $\vec{y} = A \begin{bmatrix} \vec{\xi} & \vec{y} \\ \vec{J} & \vec{J} \end{bmatrix}_{B} = \begin{bmatrix} \vec{\eta} & \vec{\xi} & \vec{J} \\ \vec{J} & \vec{J} \end{bmatrix}_{B}, 50$ $\vec{y} = \vec{L}\vec{w}\vec{J}\vec{c} \quad \text{where} \quad \vec{\omega} = T\left(\vec{z} \times \vec{v}\right) \text{ is in } \vec{J}m(T),$ Hence [Je maps Im(T) onto (ol(A). Let F: Im(T) -> Col(A) be given by F1y) = [y]e. Then F is a one-to-one and onto linear transformation. Hence, dem Im(T) = dim (ol(A), by the argument in part b. (d) Generalize the Rank-Nullity Theorem by proving the following equality $\dim(Im(T)) + \dim(\ker(T)) = \dim(V).$

V JW D IMIT)

Port collA) der (Null (A))

dini (Im(T)) + dru (res(T)) = 10 deni(col(A)) + din (Null(A)) =

by the RankNullity Theorem

= M = dein (V).

6

Let $M_{2\times 2}$ be the vector space of 2×2 matrices (with the usual scalar multiplication and addition of matrices). Consider the following basis of $M_{2\times 2}$.

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$
 Let $C = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. Let $T: M_{2\times 2} \to M_{2\times 2}$ be given by $T(B) = BC - CB$.

(b) Compute the \mathcal{B} -matrix of T (as in Problem 8, but with $V = W = M_{2\times 2}$ and take \mathcal{C} to be equal to the specific basis \mathcal{B} given above).

Interchange Ry and Rx

(c) Use part 8b to find a basis for $\ker(T)$. (It should consist of 2×2 matrices, not vectors in \mathbb{R}^4).

A $\sim \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ A $\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0$