Solution of Midterm 2, Fall 2015

1. (20 points) You are given below the matrix A together with its row reduced echelon form B (you need not verify that B is indeed the reduced echelon form of A)

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 2 & -2 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ -2 & 1 & 0 & 0 & -2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 3 & 2 & 2 & 2 & 2 & 2 \\ 1 & 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 1 & 2 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\times_{3} \times_{5} \times_{6} \quad \text{free}$$

a) Find a basis for the null space Null(A) of A. Justify!

$$\begin{vmatrix} x_1 \\ x_6 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{vmatrix} = \begin{pmatrix} -x_3 - x_5 + x_6 \\ -2x_3 + x_6 \\ x_3 \\ x_5 - x_6 \\ x_5 \\ x_6 \end{vmatrix} = \begin{vmatrix} -x_3 - x_5 + x_6 \\ -2x_3 + x_6 \\ x_5 \\ x_6 \end{vmatrix} = \begin{vmatrix} -x_3 - x_5 + x_6 \\ -2x_3 + x_6 \\ x_5 \\ x_6 \end{vmatrix} = \begin{vmatrix} -x_3 - x_5 + x_6 \\ -2x_3 + x_6 \\ x_5 \\ x_6 \end{vmatrix} = \begin{vmatrix} -x_3 - x_5 + x_6 \\ -2x_3 + x_6 \\ x_5 \\ x_6 \end{vmatrix} = \begin{vmatrix} -x_3 - x_5 + x_6 \\ -2x_3 + x_6 \\ x_5 \\ x_6 \end{vmatrix} = \begin{vmatrix} -x_3 - x_5 + x_6 \\ -2x_3 + x_6 \\ x_5 \\ x_6 \end{vmatrix} = \begin{vmatrix} -x_3 - x_5 + x_6 \\ x_5 \\ x_5 \end{vmatrix} = \begin{vmatrix} -x_3 - x_5 + x_6 \\ x_5 \\ x_5 \end{vmatrix} = \begin{vmatrix} -x_3 - x_5 + x_5 \\ x_5 \\ x_5 \end{vmatrix} = \begin{vmatrix} -x_3 - x_5 + x_5 \\ x_5 \\ x_5 \end{vmatrix}$$

- The set { V1, V2, Y3} is a basis Got Null (A)
 - b) Find a basis for the column space Col(A) of A. Justify!

The pivot columns (pirst, second, and powth)

form a baris for
$$Col(A)$$

Baris; $\begin{cases} \binom{1}{0} \\ \binom{1}{2} \\ \binom{1}{0} \end{cases}$

c) Is the sixth column $a_6 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$ of the matrix A in part 1a) a linear combi-

nation of the first five columns of A? Justify your answer. Hint: A careful reading of Question 1 will eliminate the need for any computations.

Let by be the j-th column of B.
Then
$$b_6 = -b_1 - b_2 + b_4$$
.
Hence $a_6 = -a_1 - a_2 + a_4$.

2. (a) (10 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by

$$T(x_1, x_2) = (3x_1 - 4x_2, -5x_1 + 7x_2).$$

Show that T is invertible and find a formula for T^{-1} .

$$T\left(\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}\right) = \begin{pmatrix} 3x_{1} - 4x_{2} \\ -5x_{1} + 7x_{2} \end{pmatrix} = \begin{pmatrix} 3 - 4 \\ -5 & 7 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 7 & 4 \\ 5 & 3 \end{pmatrix} \quad \text{and} \quad SO$$

$$T^{-1}\left(\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}\right) = A^{-1}\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 7x_{1} + 4x_{2} \\ 5x_{1} + 3x_{2} \end{pmatrix}$$

$$T^{-1}\left(x_{1}, x_{2}\right) = \begin{pmatrix} 7x_{1} + 4x_{2} \\ 5x_{1} + 3x_{2} \end{pmatrix}$$

(b) (10 points) Let \mathbb{P}_2 be the vector space of polynomials of degree ≤ 2 . Recall that a vector in \mathbb{P}_2 is a polynomial p(x) of the form $p(x) = a_0 + a_1x + a_2x^2$, where the coefficients a_0, a_1, a_2 are arbitrary real numbers. Is the subset $\{f, g, h\}$ of \mathbb{P}_2 , consisting of the three polynomials f(x) = 1 - x, $g(x) = 1 - x^2$, and $h(x) = 1 + x + x^2$, linearly dependent or independent? Justify your answer.

Solve for
$$c_{1}, c_{2}, c_{3}$$
 in the vector equation (in P_{2})

 $c_{1}(1-x)+c_{2}(1-x^{2})+c_{3}(1+x+x^{2})=0+0x+0x^{2}$
 $(c_{1}+c_{2}+c_{3})+(-c_{1}+c_{3})x+(-c_{2}+c_{3})x^{2}=$

Equations coefficients we get the system of 3 lines of egactions of $c_{1}+c_{2}+c_{3}=0$
 $c_{1}+c_{2}+c_{3}=0$

Whose motival form is $c_{1}=0$ $c_{1}=0$ $c_{2}+c_{3}=0$

An $c_{1}=0$ $c_{1}=0$ $c_{2}=0$ $c_{3}=0$

An $c_{1}=0$ $c_{2}=0$ $c_{3}=0$

An $c_{1}=0$ $c_{2}=0$ $c_{3}=0$

An $c_{1}=0$ $c_{2}=0$ $c_{3}=0$

Column. Hence the matrix equation has a unique solution $c_{1}=0$, $c_{2}=0$, $c_{3}=0$.

Hence equation & has any the trivial solution and ependent (by definition of lines of independent (by definition of lines of lines of independence)

3. a) (8 points) Let A, B, and C be invertible $n \times n$ matrices. Show that there exists precisely one $n \times n$ matrix X satisfying C(A + X)B = A. Express X in terms of A, B, and C.

$$A+X=C^{-1}AB^{-1}$$

$$X=C^{-1}AB^{-1}-A$$

b) (12 points) Let
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$
. Compute its inverse A^{-1} . (Check that $AA^{-1} = I$.)

$$Add = \frac{1}{2}R_{1} \text{ to } R_{2}$$

$$Add = \frac{1}{2}R_{2} \text{ to } R_{2$$

$$A^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & -1 \\ -1 & 1 & 2 \end{pmatrix}$$

- 4. (20 points) Determine if the following subset H of \mathbb{R}^n is a subspace. If it is not, find a property in the definition of a subspace which H violates. If H is a subspace find either a set of vectors which spans it, or a matrix A such that H is Null(A) (which will provide the justification that it is indeed a subspace).
 - (a) $H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}$ such that $xy \ge 0 \right\}$ (the union of the first and third quadrants).

H is not a subspace because it is not closed under addition. (1) and (2) are in H,

but
$$\binom{1}{0} + \binom{0}{-1} = \binom{1}{-1}$$
 is not in H_0

(b)
$$H = \left\{ \begin{bmatrix} 4x_1 + x_3 \\ 2x_1 - 3x_2 \\ x_2 + 6x_3 \end{bmatrix} \right\}$$
 such that x_1, x_2, x_3 are arbitrary real numbers $\left\{ \begin{pmatrix} A \\ A \\ A \end{pmatrix} + A \begin{pmatrix} A \\ -3 \\ 1 \end{pmatrix} + A \begin{pmatrix} A \\ A \\ 4 \end{pmatrix} + A \begin{pmatrix} A \\ -3 \\ 1 \end{pmatrix} + A \begin{pmatrix} A \\ A \\ 4 \end{pmatrix} + A \begin{pmatrix}$

Hence, It is a subspace,

5. (20 points) a) Compute the volume of the parallelepiped in \mathbb{R}^3 with vertices $\vec{0}$, v_1 , v_2 , v_3 , $v_1 + v_2$, $v_1 + v_3$, $v_2 + v_3$, $v_1 + v_2 + v_3$ (the parallelepiped determined by v_1 , v_2 , and v_3) where

$$v_{1} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \quad v_{2} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad v_{3} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$Vol = \begin{vmatrix} det \begin{pmatrix} -1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 3 \end{vmatrix} = \begin{vmatrix} det \begin{pmatrix} -1 & 1 & 1 \\ 0 & 3 & 4 \\ 0 & 2 & 4 \end{vmatrix} = \begin{vmatrix} -1 \begin{pmatrix} 3 & 4 - 2 & 4 \\ 0 & 2 & 4 \end{vmatrix} = \begin{vmatrix} -1 \begin{pmatrix} 3 & 4 - 2 & 4 \\ 0 & 2 & 4 \end{vmatrix} = \begin{vmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 & 4 \end{vmatrix}$$

$$Add \quad R_{1} \text{ for } R_{3}$$

$$Add \quad R_{1} \text{ for } R_{3}$$

$$Add \quad R_{1} \text{ for } R_{3}$$

b) Let T be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 sending a vector \vec{x} to $A\vec{x}$, where A is the matrix $\begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$. Suppose v_1, v_2 are two vectors in \mathbb{R}^2 , such that the parallelogram with vertices $0, v_1, v_2, v_1 + v_2$ has area 8 square meters. Compute the area of the image of this parallelogram under the transformation T. (The image is the parallelogram with vertices $0, A(v_1), A(v_2), A(v_2)$ and $A(v_1 + v_2)$. Justify your answer!

area =
$$\left| \det \left(Av_1 Av_3 \right) \right| = \left| \det \left(A \cdot \left(v_1 v_3 \right) \right) \right| =$$

matrix matrix with product columns

 $= \left| \det \left(A \right) \left| \det \left(v_1 v_3 \right) \right| = 7.8 = 56$
 $\left| \left(10 - 3 \right) \right| = 8$