Name: MY SOLUTION

1. (16 points) The matrices A and B below are row equivalent (you do not need to check this fact).

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ -2 & 1 & 0 & 0 & -2 & 1 \\ 1 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 2 & -2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

X3, X5, X6 are free a) Find a basis for the null space Null(A) of A.

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \end{bmatrix} = \begin{bmatrix} -x_{3} - x_{5} + x_{6} \\ -2x_{3} + x_{6} \\ x_{3} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{3} \begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_{5} \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + x_{6} \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{3} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_{5} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{3} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_{6} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{3} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_{6} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{3} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_{6} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{6} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{1} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{1} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{1} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{1} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{1} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{1} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \\ x_{6} \end{bmatrix} = x_{1} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}) \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$

The Mon-zero Mows of B c) Find a basis for the row space of A.

Name:_____

2

2. (16 points)

5 pt (a) Show that the characteristic polynomial of the matrix
$$A = \begin{pmatrix} 6 & 0 & -4 \\ 0 & 1 & 0 \\ 8 & 0 & -6 \end{pmatrix}$$
 is $-(\lambda - 1)(\lambda + 2)(\lambda - 2)$.

$$|A-\lambda I| = \begin{vmatrix} 6-\lambda & 0 & -4 \\ 0 & 1-\lambda & 0 \\ 8 & 0 & -6-\lambda \end{vmatrix} = (1-\lambda) \begin{vmatrix} 6-\lambda & -4 \\ 8 & -6-\lambda \end{vmatrix} = (1-\lambda) [\lambda^{2} - 36] + 32$$

$$= -(\lambda - 1)(\lambda + \lambda)(\lambda - \lambda)$$

(b) Find a basis of
$$\mathbb{R}^3$$
 consisting of eigenvectors of A .

$$\lambda_1 = 1 : A - I = \begin{bmatrix} 5 & 0 & -4 \\ 0 & 9 & 0 \\ 8 & 0 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\lambda_2 = \lambda : A = \lambda I = \begin{bmatrix} 4 & 0 & -4 \\ 0 & -1 & 0 \\ 8 & 0 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\frac{\lambda_{3}=\lambda_{1}}{A+\lambda_{1}} = \begin{bmatrix} 8 & 0 & -4 \\ 0 & 3 & 0 \\ -8 & 0 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$$

Null
$$(A-I)=Sp$$
 $\begin{cases} 0\\ 1\\ 0 \end{cases}$

$$x_{3} \cdot \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$$

$$x_{3} \cdot \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}$$

5 015

(c) Find an invertible matrix P and a diagonal matrix D such that the matrix A above satisfies

$$P^{-1}AP = D$$

$$P = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & & \\ 2 & -2 \end{bmatrix}$$

3. (4 point) Let A be a 6×10 matrix (6 rows and 10 columns). Denote the dimension of the column space of A by r.

a pts

(a) The dimension r of the column space must be in the range \bigcirc $\leq r \leq \bigcirc$.

1 pt

(b) Express the dimension of the null space of A in terms of r. dim Null(A) = 10 - 10.

1 pt

4. (16 points) The vectors $v_1=\begin{pmatrix}1\\1\end{pmatrix}$ and $v_2=\begin{pmatrix}1\\-1\end{pmatrix}$ are eigenvectors of the $\text{matrix } A = \left(\begin{array}{cc} .7 & .3 \\ .3 & .7 \end{array} \right).$

 \mathcal{H} \mathcal{H} (a) The eigenvalue of v_1 is $\underline{\mathcal{H}}$

The eigenvalue of v_2 is ___ \mathcal{U}

4 ρ (b) Find the coordinates of $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ in the basis $\{v_1, v_2\}$.

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & -1 \\ 2 & 2 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 \end{bmatrix}$$

 \mathcal{H} pt (c) Compute $A^{100} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

$$A^{100}\begin{bmatrix}1\\2\end{bmatrix} = \frac{3}{2}\begin{bmatrix}1\\1\end{bmatrix} - (0.4)^{100} \cdot \frac{1}{2}\begin{bmatrix}1\\-1\end{bmatrix}$$

 \mathcal{U} (d) As n gets larger, the vector $A^n \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ approaches $\frac{3}{2} \frac{1}{2}$ Justify your answer.

5. (16 points) Let
$$W$$
 be the plane in \mathbb{R}^3 spanned by $u_1 = \begin{bmatrix} 4 \\ -1 \\ -8 \end{bmatrix}$ and $u_2 = \begin{bmatrix} -7 \\ 4 \\ -4 \end{bmatrix}$.

 \mathcal{U} (b) Find the distance from v to W.

destance =
$$||V - \hat{V}|| = ||\int_{8}^{H}|| = \sqrt{16 + 64 + 1} = \sqrt{81} = 9$$

H pto

(c) Set $u_3 := v - \text{Proj}_W(v)$ and let U be the 3×3 matrix with columns $u_1, u_2,$ and u_3 . Show that $\frac{1}{9}U$ is an **orthogonal** matrix.

 \mathcal{V} (d) Find the distance, from the vector $\left(\frac{1}{9}U^T\right)v$ to the plane in \mathbb{R}^3 spanned by the vactors $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, without any further calculations. Explain your answer! Hint: where does $\frac{1}{9}U$ take the three vectors above?

1 507 to 3u2

" (gut) v to v

Thus, the answer is equal to

the distance from v to the plane spanned by us, us, which is

the answer in part b.

Thus, the answer is equal to

the answer in part b.

We become the fact. First about a line L through the origin (you may assume this fact). Find a vector w which spans the line L (the axis of rotation).

$$\begin{bmatrix}
\frac{4}{9} - 1 & -\frac{7}{9} & \frac{4}{9} \\
-\frac{1}{9} & \frac{4}{9} - 1 & \frac{8}{9} \\
-\frac{8}{9} & -\frac{4}{9} & \frac{1}{9} - 1
\end{bmatrix}$$

$$\begin{bmatrix}
-5 & -7 & 4 \\
-1 & -5 & 8 \\
-8 & -4 & -8
\end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\lambda x_3 \\ \lambda x_3 \end{bmatrix} = x_3 \begin{bmatrix} -\lambda \\ \lambda \end{bmatrix}$$

eigenvector with eigenvalue 1

6. (16 points) Let
$$W$$
 be the plane in \mathbb{R}^3 spanned by $a_1=\begin{pmatrix}1\\1\\1\end{pmatrix}$ and $a_2=\begin{pmatrix}2\\1\\0\end{pmatrix}$

(a) Find the projection of a_2 to the line spanned by a_1 .

$$Pnoj_{a_1}(a_2) = \frac{a_1 \cdot a_2}{a_1 \cdot a_1} \cdot a_1 = \frac{3}{3} \cdot a_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

(b) Find the distance from a_2 to the line spanned by a_1 .

distance =
$$||a_{\delta} - Proja_{1}(a_{\delta})|| = ||[a_{\delta}] - [a_{\delta}]|| = ||[a_{\delta}]$$

(c) Use your calculations in parts 6a and 6b to show that the vectors $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

 $U_1 = \mathcal{A}_1$ and $u_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ form an orthogonal basis of the plane W given above.

(d) Find the projection of $b = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$ to W.

$$\hat{b} = \frac{b \cdot u_1}{u_1 \cdot u_1} \cdot u_1 + \frac{b \cdot u_2}{u_2 \cdot u_2} \cdot u_2 = \frac{6}{3} \cdot u_1 + \frac{1}{2} \cdot u_2 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

(e) Find a least square solution of the equation Ax = b, where $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$ is the 3×2 matrix with columns a_1 and a_2 . I.e., find a vector x in \mathbb{R}^2 , for which

the
$$3 \times 2$$
 matrix with columns a_1 and a_2 . I.e., find the distance $||Ax - b||$ from Ax to b is minimal.

A $\overrightarrow{X} = \overrightarrow{b} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & | & 3 \\ 1 & 1 & | & 2 \\ 1 & 0 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 4 \\ 0 & 1 & | & 1 \\ 0 & 0 & | & 0 \end{bmatrix}$$

So,
$$x_1 = 1$$

 $x_2 = 1$

Method 2:
$$A^TA\vec{x} = A^T\hat{b} = A^T\hat{b}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 67 \\ 8 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}$$

$$[\frac{3}{3}, \frac{3}{5}, \frac{6}{8}] \sim [\frac{1}{9}, \frac{9}{1}]$$

7. (16 points)

(a) Find the matrix A of the rotation of \mathbb{R}^2 an angle of $\frac{\pi}{4}$ radians (45°) counterclockwise.

$$\left(\frac{\cos(\Xi)}{\sin(\Xi)} - \sin(\Xi) \right) = \begin{bmatrix} \frac{1}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} \end{bmatrix}$$

$$\left(\frac{\sin(\Xi)}{\sin(\Xi)} \right) = \left(\frac{1}{5} - \frac{1}{5} \right)$$

(b) Find the matrix B of the reflection of the plane about the line $x_2=0$ (the x_1 coordinate line).

$$\frac{Ae_{2}=[2]}{e_{1}=[2]}$$

$$B=\frac{1}{0}$$

$$Be_{1}=[2]$$

$$Be_{2}=[2]$$

(c) Compute $C = B^{-1}AB$.

(d) Show that C is the matrix of a rotation and find the angle of rotation.

Rotatem by angle

THE CLOCKWise

Ce, — # counter clockwise