Math 235 Final Exam Fall 2001
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1. (16 points) The matrices A and B below are row equivalent (you do not need to
check this fact).
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2. (16 points)
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~A=1)A+2)(A-2).
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(b) Find a basis of R? consisting of eigenvectors of A.
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Find an invertible matrix P and a diagonal matrix D such that the matrix
A above satisfies

p- Yo

1
O

PlAP =D
L
™| N1
|-

/|
O
1 A

3. (4 point) Let A be a 6 x 10 matrix (6 rows and 10 columns). Denote the dimension
of the column space of A by r.

o Pb (a) The dimension r of the column space must be in the range
O <r< 6.
i T}t (b) Express the dimension of the null space of A in terms of r.
dim Null(4) = __10 — ¢,

i )1" (c) Express the dimension of the row space of A in terms of r.
] dim Row(A) = Z .
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4. (16 points) The vectors v, = 1
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(a) The eigenvalue of v, is
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Justify your answer.
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5. (16 points) Let W be the plane in R® spanned by u, = l: -1 ] and uy, = l: 4 } .
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(c) Set uz := v — Projy(v) and let U be the 3 x 3 matrix with columns u;, Us,
and u3. Show that ;U is an orthogonal matrix. o
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(d) Find the distance, from the vector (§UT) v to the plane in R* spanned by

1 0
the vactors [ 0 jl and [ 1 } , without any further calculations. Explain your
0 0

answer! Hint: where does U take the three vectors above?
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/) may assume this fact). Find a vector w which spans the line L (the axis of

rotation).
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6. (16 points) Let W be the plane in R® spanned by a, = ( 1 ) and a; = ( 1 )
(a) Find the projection of a, to the line spanned by a,.
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(b) Find the distance from a to the line spanned by a;.
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and up = ( 0 ) form an orthogonal basis of the plane W given above.
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Find the projection of b = ( 4 ) to W.
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(e) Find a least square solution of the equation Az = b, where A =

the 3 x 2 matrix with columns a, and ay. Le., find a vector z in R2, for which
the distance || Az — b|| from Az to b is minimal.
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(16 points)
) Find the matrix A of the rotation of R? an angle of 7 radians (45°) counter

g 0\/%7/ clockwise.
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(b) Find the matrix B of the reflection of the plane about the line z, = 0 (the z,
coordinate line).
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