MATH 132 H FALL 2012 EXAM 2

1. (10 points) Evaluate the integral $\int_{0}^{1} \frac{x}{x^{2}+5 x+6} d x$ using partial fractions. Show all your algebraic steps.

$$
\underbrace{}_{(x+2)(x+3)}
$$

$$
\begin{aligned}
\frac{A}{x+2}+\frac{B}{x+3} & =\frac{x}{x^{2}+5 x+6} \\
\underbrace{}_{A(x+3)+B(x+2)} & =x \\
A & =-2
\end{aligned} \quad A=-2, B=3,
$$

$$
=-3
$$

$$
\begin{aligned}
& \int_{0}^{1} \frac{x}{x^{2}+5 x+6} d x=\int_{0}^{1} \frac{-2}{x+2}+\frac{3}{x+3} d x=[-2 \ln (x+2)]_{0}^{1}+[\ln (x+3)]_{0}^{1} \\
& =-2 \ln (3)+2 \ln (2)+3 \ln (4)-3 \ln (3) \\
& =+2 \ln (2)-5 \ln (3)+3 \ln (4) .
\end{aligned}
$$

2. a) (8 points) Use the comparison test in order to determine if the following improper integral is convergent or divergent $\int_{1}^{\infty} \frac{\ln (x)}{x^{2}+1} d x$. Carefully justify your answer!
Method 1: $0 \leqslant \frac{\ln (x)}{x^{2}+1} \leqslant \frac{\ln (x)}{x^{2}}$, for all $x \geqslant 1$. Now $\int_{1}^{\infty} \frac{\ln (x)}{x^{2}} d x=$

$$
\begin{aligned}
& =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{\ln (x)}{x^{2}} d x=\lim _{u=\ln _{t \rightarrow \infty}} \int_{u(x)=0}^{\ln (t)} \underbrace{\frac{u}{e^{u}}}_{\|} d u=\lim _{s \rightarrow \infty} \int_{0}^{s} u e_{v^{\prime}}^{-u} d u= \\
& d u=\frac{1}{x} d x \quad \|^{-u} \quad e^{-u} \quad u^{\prime}=1 \quad v=-e^{-u} \\
& x=e^{u} \\
& \lim _{s \rightarrow \infty}(\underbrace{\left[-u e^{-u}\right]_{0}^{s}}_{\frac{s}{e^{s}}}-\underbrace{\int_{0}^{s}-e^{-u} d u}_{\left[e^{-u]^{s}}\right.})=\lim _{s \rightarrow \infty}\left(\frac{s}{e^{s}}-e^{-s}+1\right)=1<\infty,
\end{aligned}
$$

Far \circledast we used L'Hopital; $\lim _{s \rightarrow \infty} \frac{s}{e^{s}} \sum_{\text {Litop }}^{\left[\frac{\infty}{\infty}\right]} \lim _{s \rightarrow \infty} \frac{1}{e^{s}}=0$,
We see that $\infty^{\infty} \int \frac{\ln (x)}{x^{2}} d x$ is cover gent.
Hence, so is $\int_{1}^{\infty} \frac{\ln (x)}{x^{2}+1} d x$, by the comparison test.
b) (8 points) Evaluate the improper integral showing all your algebraic steps

$$
\begin{aligned}
& \int_{0}^{1} \frac{e^{(-1 / x)}}{x^{3}} d x=\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \frac{e^{-1 / x}}{x^{3}} d x= \\
& =\lim \int^{1}-u e^{-u} d u=\lim \int^{s} u e^{-u} d u=\frac{d u=-\frac{1}{x^{2}} d x}{} d x \\
& =\lim _{s \rightarrow \infty}=\int_{t} \int_{1} u e^{-u} d u= \\
& u^{\prime}=1 \quad v=-e^{-u}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{e} \text {. }
\end{aligned}
$$

3. (14 points) For each of the following sequences (not series) determine whether the sequence converges or diverges. If it converges, find the limit, showing all your algebraic steps. Otherwise, explain why it diverges.
a) $a_{n}=\sqrt{n+2}-\sqrt{n}, \quad n \geq 1$.

Hint: Use the identity $(a-b)(a+b)=a^{2}-b^{2}$.

$$
\begin{aligned}
a_{n} & =\frac{(\sqrt{n+2}-\sqrt{n})(\sqrt{n+2}+\sqrt{n})}{\sqrt{n+2}+\sqrt{n}}=\frac{(n+\alpha)-n}{\sqrt{n+2}+\sqrt{n}}= \\
& =\frac{\alpha}{\sqrt{n+2}+\sqrt{n}}=\frac{\alpha / \sqrt{n}}{\sqrt{\frac{n+2}{n}}+1} \rightarrow m \rightarrow \infty
\end{aligned}
$$

b) $a_{n}=\left(n^{2}+3\right)^{1 / n}, \quad n \geq 1$.

$$
\left.a_{m}=e^{\text {b) } a_{n}=\left(n^{2}+3\right)^{1 / n}, n \geq 1}=e^{\frac{1}{m}\left(m\left(m^{2}+3\right)^{1 / n}\right)}=3\right)
$$

e^{x} is continuous at every x.
$\lim _{n \rightarrow \infty} \frac{\ln \left(n^{2}+3\right)}{n}=\lim _{x \rightarrow \infty} \frac{\ln \left(x^{2}+3\right)}{x} \stackrel{[\infty}{\text { LH op }} \underset{\text { LH }}{\infty} \lim _{x \rightarrow \infty} \frac{\left[\frac{1}{\left(x^{2}+3\right)} \cdot 2 x\right]}{1}=$

$$
=\lim _{x \rightarrow \infty} \frac{(2 / x)}{1+\frac{3}{x^{2}}}=\frac{0}{1}=0,
$$

Hence $\lim _{n \rightarrow \infty} a_{n}=e^{0}=1$.
4. (14 points)
(a) Find the values of x, for which the series $\sum_{n=0}^{\infty} \frac{(2 x-3)^{n}}{9^{n}}$ converges. State the convergence test you use and explain why its hypotheses are satisfied.
The series is a geometric series

$$
\begin{aligned}
& \text { with } r=\frac{2 x-3}{9} a r^{n} \\
&\left|\frac{2 x-3}{9}\right|<1 \\
&|2 x-3|<9 \\
&-9<2 x-3<9 \\
&-6<2 x<12 \\
&-3<x<6
\end{aligned}
$$

(b) Find the sum of the series for those values of x. Simplify your answer.

If $-3<x<6$, the sum of $\sum_{n=0}^{\infty} a r^{n}$ is $s=\frac{a}{1-\pi}$
In our care, $a=1$,

$$
s(x)=\frac{1}{1-\left(\frac{2 x-3}{9}\right)}=\frac{9}{9-(2 x-3)}=\frac{9}{12-2 x}
$$

5. (14 points) Let s be the sum of the series $\sum_{n=1}^{\infty} \frac{4}{n^{5}}$ and s_{n} the n-th partial sum.

Find the minimal number n of terms of the series, for which we know that $s-s_{n} \leq 10^{-8}$, by the error estimate of the integral test. Justify your answer, showing all your algebraic steps.
The seq $\frac{4}{m^{5}}$ is positive, decreasing, and $\int_{1}^{\infty} / x^{5} d x$ converges,
The errer estimate for the integral' test is

$$
=\lim _{x \rightarrow \infty}\left[-x^{-4}\right]_{n}^{t}=\lim _{n \rightarrow \infty}^{\infty} \frac{4}{x^{5}} d x=\lim _{t \rightarrow \infty} \int_{n}^{t} \frac{1}{x^{5}} d x=
$$

We meed $S-S_{M} \leq \frac{1}{10^{8}}$.
The unequally. holds if $M^{4} \geqslant 10^{8}$

$$
M \geqslant 100
$$

$M=100$ is the minimal number, for which we ronar the inequity (by the integral terf).
6. (32 points) Determine whether the following series converge absolutely, converge conditionally, or diverge. Name each test you use and indicate why all the conditions needed for it to apply actually hold.

$$
\text { (a) } \sum_{n=1}^{\infty} \sqrt{\sqrt{n+10}}=a_{n}
$$

Use limit comparison test with $\sum b_{n}, b_{n}=\frac{\sqrt{m}}{m^{2}}=\frac{1}{m^{3 / 2}}$ The latter is convergent, by the p-tart:

$$
\lim _{n \rightarrow \infty} \frac{a_{m}}{b_{n}}=\lim _{m \rightarrow \infty} \frac{(\sqrt{n+10}) / \sqrt{m}}{\left(m^{2}+3 n+5\right) / m^{2}}=\lim _{m \rightarrow \infty}\left(\frac{\sqrt{1+\frac{10}{n}}}{1+\frac{3}{n}+\frac{5}{n^{2}}}\right)=1
$$

Hence, $\sum a_{n}$ converges as well.

$$
\underset{\substack{8 p t}}{\gamma_{\infty}}
$$

$$
\text { (b) } \sum_{n=1}^{\infty}(\underbrace{(-1)^{n} e^{1 / n}}_{a_{M}}
$$

$$
\lim _{n \rightarrow \infty}\left|(-1)^{n} e^{\frac{1}{n}}\right|=e^{\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)}=e^{0}=1 \neq 0
$$

The series diverges, by the n-torm test.
$\frac{8 p^{\text {to }}}{\text { r }}$
(c) $\sum_{n=3}^{\infty}(-1)^{n}\left(\frac{\ln (n)}{n}\right)$
$\frac{\ln (n)}{n} \geqslant \frac{1}{n}$ for $n \geqslant 3 . \sum_{n=3}^{\infty} \frac{1}{n}$ diverged (harmonic
Hence $\sum_{m=3}^{\infty} \frac{\ln (m)}{n}$ diverges, The series is NOT absolutely $\quad n=3 \mathrm{n}$ argent,

Let wo check the conditions of the Alternating Series
Theorem:

$$
\left.\frac{\text { Leorem }}{(1)} \lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=\frac{[\infty}{\infty}\right]_{\lim _{n \rightarrow \infty}} \frac{(1 / n)}{1}=0
$$

(2) Sign is alternating
(3) Decreasing! $\frac{\delta}{\partial x}\left(\frac{\ln (x)}{x}\right)=\frac{(1 / x) \cdot x-\ln (x)}{x^{2}}<0$ for $x \geqslant 3$,
$\underbrace{\left.\sum_{n=1}^{\infty}(-1)^{n} \frac{n!2^{n}}{(2 n)!}\right)}_{a_{m}} \cdots \begin{aligned} & \text { Hence, the series is } \\ & \text { CONDITIONALLY COMVER, }\end{aligned}$
Ration Test: \qquad

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|= & \lim _{n \rightarrow \infty}\left[\frac{(n+1)!2^{n+1}}{(2 n+2)!}\right] \cdot\left[\frac{(2 n)!}{n!2^{n}}\right]= \\
= & \lim _{n \rightarrow \infty} \frac{(n+1) \cdot 2}{(2 n+2)(2 n+1)}=2 \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n^{2}}+\frac{1}{n}\right)}{\left(2+\frac{2}{n}\right)\left(2+\frac{1}{n}\right)}= \\
& =1
\end{aligned}
$$

Hence, the series is absolulely convergent by the Ratio Tent

