My Sol'm
MATH 132H FALL 2012 EXAM 1 - SYMBOLIC PART

This is the FIRST PART of the exam. It consists of 3 questions. Do not spend more than 30 minutes on this part!

Calculators and notes are NOT allowed on this part.
It is not sufficient to just write the answers. You must explain how you arrive at your answers.

$$
\begin{aligned}
\cos ^{2}(\theta)+\sin ^{2}(\theta) & =1 \\
\sec ^{2}(\theta)-\tan ^{2}(\theta) & =1 \\
\cos ^{2}(\theta) & =\frac{1+\cos (2 \theta)}{2} \\
\sin ^{2}(\theta) & =\frac{1-\cos (2 \theta)}{2} \\
\sin (2 \theta) & =2 \sin (\theta) \cos (\theta) \\
\cos (2 \theta) & =\cos ^{2}(\theta)-\sin ^{2}(\theta)
\end{aligned}
$$

1 pts

1. (10) Evaluate $\begin{aligned} \int \frac{1}{x^{2} \sqrt{9+x^{2}}} d x & = \\ x & =3 \tan \tan (\theta)\end{aligned}$

$$
\begin{aligned}
& d x=3 \sec ^{2}(\theta) d \theta \quad \sec \\
& =3 p t \theta \\
& u=\sin (\theta)
\end{aligned} \frac{1}{9} \int \frac{1}{u^{2}} d u=
$$

$$
\frac{\cos (\theta)}{\sin ^{2}(\theta)}
$$

$$
d u=\cos (\theta) d \theta
$$

$$
=\frac{-1}{9} u^{-1}+C=-\frac{1}{9} \frac{1}{\sin (\theta)}+C=-\frac{1}{9} \frac{\sqrt{1+\left(\frac{x}{3}\right)^{2}}}{\left(\frac{x}{3}\right)}+C
$$

Math 132H-FALL 2012 SYMBOLIC EXAM

$4 p^{t}$
pto

$$
=\frac{1}{4}\left(\frac{1}{2}-\frac{\cos (4 x)}{2} d x=\frac{x}{8}-\frac{\sin (4 x)}{32}+C=\right.
$$

3. (10) Evaluate" $\int e_{e^{2 x} \cos (x) d x} \stackrel{2 p \hbar t}{=} u v-\int u^{\prime} v d x=$

$$
\begin{aligned}
& u^{\prime}=2 e^{2 x} v=\sin (x) \\
& u^{\prime}(x)-2 \int e^{2 x} \sin (x) d x= \\
& u \quad v^{\prime} \\
& u^{\prime}=2 e^{2 x} \quad v=-\cos (x)
\end{aligned}
$$

2 pto

2 pto

$$
\begin{aligned}
& =e^{2 x} \sin (x)-2\left\{-e^{2 x} \cos (x)+\int 2 e^{2 x}(+\cos (x)) d x\right\} \\
& =e^{2 x} \sin (x)+2 e^{2 x} \cos (x)-4 I+C \\
& 5 I \stackrel{4}{=} \frac{1}{2 d} e^{2 x} \sin (x)+2 e^{2 x} \cos (x)+C \\
& I=\frac{1}{5}\left[e^{2 x} \sin (x)+2 e^{2 x} \cos (x)\right]+C 1
\end{aligned}
$$

4 (12) Determine the following derivatives. Briefly justify each answer.

$$
\begin{aligned}
\mathrm{i}^{\text {a) } \frac{\partial}{\partial x} \int_{0}^{\sin (x)} \frac{1}{1+t^{2}} d t} & =\frac{1}{1+u^{\alpha}} \cdot \frac{\partial u}{\partial x}=\frac{1}{1+(\sin (x))^{2}} \cdot \cos (x) \\
6 \text { pto } & \text { FTC } \\
& +\operatorname{chain} R u \bar{l}\} \\
& u=\sin (x)
\end{aligned}
$$

b) $\frac{\partial}{\partial x} \int_{x}^{e^{x}} \ln (t) d t=\frac{\partial}{\partial X}$

$$
-\int_{1}^{x} \ln (t) d t
$$

$=\quad-\ln (x)+$

$$
\underbrace{\ln \left(e^{x}\right)}_{x} \cdot e^{x}=-\ln (x)+x e^{x}
$$

chair Rule

5 (15) a) Sketch the region \mathcal{R} in the first quadrant bounded by the curve $x^{2}+y^{2}=5$, and the curve $x y=2$.

$$
3-\left(\frac{2}{x}\right)
$$

b) Set up a definite integral for the the volume of the solid obtained by revolving about the horizontal line $y=3$ the region \mathcal{R} in part a). Do NOT evaluate the integral.
Vol

3 1

$$
\left(3-\left(\frac{2}{x}\right)\right)^{2}
$$

2

$$
\pi \int_{1}\left(3-\left(\frac{2}{x}\right)\right)^{2}-\left(3-\sqrt{5-x^{2}}\right)^{2} d x
$$

6 (15) a) Express the integral $\int_{1}^{5} \frac{1}{1+x^{2}} d x$ as a limit, as n goes to infinity, of Riemann sums with n sub-intervals of equal length, using right endpoints as sample points.

$$
\begin{aligned}
& \Delta x=\frac{5-1}{n}=\frac{4}{m}
\end{aligned}
$$

$$
\begin{aligned}
& 5 \text { unlerval }\left[x_{i-1}, x_{i}\right] \text {, } \\
& \int_{1}^{5} \frac{1}{1+x^{2}} d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \underset{\frac{4}{n}}{\frac{\Delta x}{n}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{1+\left(1+\frac{4 i}{m}\right)^{2}} \cdot \frac{4}{n}
\end{aligned}
$$

8 pto
b) Express the limit $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{2 i}{n}\right)$
to evaluate the limit. $e^{\left[(2 i / n)^{2}\right]}\left(\frac{2}{n}\right)$ as a definite integral and use it

$$
\begin{aligned}
& x_{1}=\frac{\partial}{m}, \ldots, x_{m}=2 \\
& \int_{0}^{2}(x) e_{u=0}^{\left(x^{2}\right)} \quad b=2, \quad \frac{1}{2} d x \int_{u=x^{2}}^{4} e^{u} d u=\frac{e^{4}-e^{0}}{2}=\frac{e^{4}-1}{2}, \\
& \lim R . S= \\
& m \rightarrow \infty
\end{aligned}
$$

7 (15) a) Sketch the region in the plane bounded by the curves $x=y^{2}-2 y$ and $y=x-4$. Label the coordinates of all the x and y intercepts and the points of intersection of the two curves.

$$
\begin{aligned}
& y+4=y^{2}-2 y \\
& y^{2}-3 y-4=0 \\
& (y+1)(y-4)=0 \\
& y=-1, \text { or } y=4 \\
& x=3, \text { on } x=8
\end{aligned}
$$

8 pts
b) Find the area of the region in part a.

$$
\begin{aligned}
& \int_{-1}^{4}[\underbrace{(y+4)}_{b(y)}-\underbrace{\left(y^{2}-2 y\right)}_{\underline{g}(y)}] d y=\int_{-1}^{4}-y^{2}+3 y+4 d y= \\
& =\left[-\frac{y^{3}}{3}+\frac{3}{2} y^{2}+4 y\right]_{-4}^{4}=\left(-\frac{64}{3}+24+16\right)-\left(\frac{1}{3}+\frac{3}{2}-4\right) \\
& =\frac{-65}{3}+42 \frac{1}{2}=\frac{125}{6}
\end{aligned}
$$

8 (13) Find the volume of the solid S, whose base is a circular disk of radius R. Parallel cross-sections perpendicular to the base are squares. Carefully justify your answer.
Square of edge length $2 \sqrt{R^{2}-x^{2}}$

$$
\begin{aligned}
& \frac{1}{0}<0 \\
& R \\
& \underbrace{A(x)} d x=4 \int_{R} R^{2}-x^{2} d x= \\
& =\underbrace{\left[R^{2} x-\frac{x^{3}}{3}\right.}]_{-R}^{R}=W[\underbrace{R^{3}-\frac{R^{3}}{3}}_{\frac{2 R^{3}}{3}})-\left(-R^{3}+\frac{R^{3}}{3}\right)]
\end{aligned}
$$

