Three descriptions of the projection from a linear subspace of \mathbb{P}^{n}
Let V be an $n+1$ dimensional vector space over a field k and E a subspace. Here are three ways to describe the projection morphism

$$
\pi: \mathbb{P}(V) \backslash \mathbb{P}(E) \rightarrow \mathbb{P}(V / E) .
$$

Each has its advantage.

1 Coordinate free description

A point $q \in \mathbb{P}(V) \backslash \mathbb{P}(E)$ determines a 1-dimensional subspace Q of V, which is not contained in E, so $(Q+E) / E$ is a one-dimensional subspace of V / E, hence a point $\pi(q)$ of $\mathbb{P}(V / E)$. This desciption is the most natural, it does not depend on any choices. $\mathbb{P}(V / E)$ parameterizes subspaces of V containing E of dimension one larger than E.

2 Geometric description

Choose a subspace W of V of complementary dimension, such that $E \cap W=(0)$. Then the quotient linear transformation $V \rightarrow V / E$ restricts to W as an isomorphism onto V / E and so induces an isomorphism $\mathbb{P}(W) \cong \mathbb{P}(V / E)$. Thus, the projection is a morphism

$$
\pi: \mathbb{P}(V) \backslash \mathbb{P}(E) \rightarrow \mathbb{P}(W) .
$$

A point $q \in \mathbb{P}(V) \backslash \mathbb{P}(E)$ determines a 1-dimensional subspace Q of V and $\pi(q)$ is the unique point of intersection $\mathbb{P}(Q+E) \cap \mathbb{P}(W)$.

3 Coordinate dependent description

Choose a basis for V, so homogeneous coordinates x_{0}, \ldots, x_{n} for $\mathbb{P}(V) \cong \mathbb{P}^{n}$. Conceptually, $\left\{x_{0}, \ldots, x_{n}\right\}$ are the dual basis of V^{*}. Choose a basis $\left\{L_{0}, \ldots, L_{s}\right\}$ of the subspace $(V / E)^{*}$ of V^{*}. We get coordinates on $\mathbb{P}(V / E)$, so an isomorphism $\mathbb{P}(V / E) \cong \mathbb{P}^{s}$, and the projection is a morphism

$$
\pi: \mathbb{P}(V) \backslash \mathbb{P}(E) \rightarrow \mathbb{P}^{s}
$$

Now each $L_{j}\left(x_{0}, \ldots, x_{n}\right)$ is a linear combination of the x_{i} 's so a homogeneous polynomial of degree 1 , and $\mathbb{P}(E)=V\left(L_{0}, \ldots, L_{s}\right)$. The morphism π is then given by

$$
\pi(q)=\left(L_{0}(q): L_{1}(q): \cdots: L_{s}(q)\right) .
$$

This way we see that π is indeed a morphism. A limitation of this description is that if $X \subset \mathbb{P}(V)$ is a subvariety not contained in $\mathbb{P}(E)$, then the restriction of π to X is a rational map $\varphi: X \rightarrow \mathbb{P}(V / E)$ and its domain of definition may include some points of $X \cap \mathbb{P}(E)$. This is the case, for example, if $\mathbb{P}(E)$ is a point p which is a smooth point of a curve X, so that $\varphi(p)$ is the tangent line L to X at p (in the coordinate free description) or the intersection point of L with the hyperplane $\mathbb{P}(W)$ (in the geometric description).

