The field k below is assumed algebraically closed.

1. (Shafarevich, Ch III, Sec. 2 Problem 2) Let D be an effective divisor of positive degree on a non-singular non-rational projective curve X. Show that $\operatorname{dim}_{k}(\mathcal{L}(D)) \leq$ $\operatorname{deg}(D)$. This improves the bound in Theorem 6 in Lecture 25.
2. (Shafarevich, Ch III, Sec. 2 Problems 3, 4, 5, 6, 7, 8, 9) Let X be the projective closure $V\left(\tilde{z} \tilde{y}^{2}-\tilde{x}^{3}-A \tilde{x}^{2}-B \tilde{z}^{3}\right) \subset \mathbb{P}^{2}$ of the affine plane curve $y^{2}=x^{3}+A x+B$, where the polynomial $x^{3}+A x+B$ does not have multiple roots and $\operatorname{char}(k) \neq 2$.
(a) Show that X is non-singular and that the intersection of X with the line at infinity consists of the single point $p=(0: 1: 0)$. Denote the restrictions to X of the affine coordinate functions x and y by x, y as well. Show that $\frac{x}{y}$ is a local parameter at p and that $\nu_{p}(x)=-2$ and $\nu_{p}(y)=-3$.
(b) Every function f in $K(X)$ is of the form $P(x)+Q(x) y$. Determine when is f in $\mathcal{L}(m p)$ and show that $\ell(m p)=m$, for $m \geq 0$.
(c) Let $p_{1}, p_{2} \in X$ and denote by $C_{p_{i}} \in C l(X)$ the divisor classes of $p_{i}-p$, $i=1,2$. There exists a point $p_{3} \in X$, such that $C_{p_{3}}=C_{p_{1}}+C_{p_{2}}$, by Theorem 5 in Lecture 25. Find the coordinates of p_{3} in terms of the coordinates of p_{1} and p_{2}.
(d) Given three points p_{1}, p_{2}, p_{3} in X, show that $C_{p_{1}}+C_{p_{2}}+C_{p_{3}}=0$, if and only if the three points are collinear.
(e) Show that $-C_{(a: b: 1)}=C_{(a:-b: 1)}$, for $(a: b: 1) \in X$. Show that $C l^{0}(X)$ has exactly four elements of order 2.
(f) Given a point $q \in X$, denote by $\Theta_{q} X$ the line in \mathbb{P}^{2} tangent to X at q. The point q is an inflection point, if the multiplicity $m_{q}\left(X, \Theta_{q} X\right)$ of q as an intersection point is ≥ 3. Show that q is an inflection point, if and only if $3 C_{q}=0$.
(g) Show that the line passing through two inflection points of X intersects it in a third inflection point.
3. (Shafarevich, Ch III, Sec. 4 Problems 1 and 2) Assume that $\operatorname{char}(k) \neq 2$. Let X be the affine curve given by $x^{2}+y^{2}=1$. Denote the restrictions of the affine coordinates to X by x and y as well.
(a) Show that the differential form $d x / y$ is regular on X.
(b) Show that $\Omega^{1}[X]=\Gamma(X) d x / y$.

Hint: Use the fact that $d x / y+d y / x=\left(\frac{1}{2 x y}\right) d\left(x^{2}+y^{2}\right)=0$.
4. (Shafarevich, Ch III, Sec. 4 Problem 4) Show that $\Omega^{n}\left(\mathbb{P}^{n}\right)=0$. Hint: Use Theorem 3 in Lecture 26.
5. (Shafarevich, Ch III, Sec. 4 Problem 5) Show that $\Omega^{1}\left(\mathbb{P}^{n}\right)=0$.
6. (Shafarevich, Ch III, Sec. 4 Problem 6) Let $\left(x_{0}: x_{1}\right)$ be the homogeneous coordinates on \mathbb{P}^{1} and set $t:=x_{1} / x_{0}$. Let $P(t)=\prod_{i}\left(t-a_{i}\right)^{d_{i}}$ and $Q(t)=\prod_{j}\left(t-b_{j}\right)^{e_{j}}$ be relatively prime polynomials with $\operatorname{deg}(P)=m$ and $\operatorname{deg}(Q)=n$. At what points is the form $\omega:=\frac{P(t)}{Q(t)} d t$ not regular? Find the divisor $(\omega) \in \operatorname{Div}\left(\mathbb{P}^{1}\right)$ of ω.
7. (Shafarevich, Ch III, Sec. 5 Problems 2 (modified), 3, 4, 5) Suppose that $\operatorname{char}(k)=$ 0.
(a) Let $\varphi: X \rightarrow Y$ be a surjective morphism of non-singular projective curves. Let p be a point of X, set $q:=\varphi(p)$, and let t be a local parameter of Y at q. Show that the integer $e_{p}:=\nu_{p}\left(\varphi^{*} d t\right)$ does not depend on the choice of t and that $e_{p}>0$, if and only if the multiplicity of p in the divisor $\varphi^{*}(q) \in \operatorname{Div}(X)$ is greater than 1 . The integer e_{p} is called the ramification index of p and p is called a ramification point if $e_{p}>0$.
(b) Let $\varphi^{*}(q)=\sum_{i} l_{i} p_{i} \in \operatorname{Div}(X), l_{i} \in \mathbb{Z}, p_{i} \in X$. Show that $e_{p_{i}}=l_{i}-1$.
(c) Suppose that $Y=\mathbb{P}^{1}$. Show that $g(X)=\left(\frac{1}{2} \sum_{p \in X} e_{p}\right)-\operatorname{deg}(\varphi)+1$. Hint: Use Theorem 1 of Lecture 24 and the fact that $\operatorname{deg}\left(K_{X}\right)=2 g(X)-2$.
(d) For Y of arbitrary genus, show that

$$
[2 g(X)-2]=\left(\sum_{p \in X} e_{p}\right)+\operatorname{deg}(\varphi)[2 g(Y)-2]
$$

(e) Let ω be a rational differential 1-form on Y. Show that if $\varphi^{*}(\omega)$ is regular, the ω is regular.
8. (Shafarevich, Ch III, Sec. 5 Problem 9) Verify the Riemann-Roch theorem for $X=\mathbb{P}^{1}$.
9. (Shafarevich, Ch III, Sec. 5 Problems 10, 11) Let X be a smooth projective curve of genus 1 and p a point of X.
(a) Show that for every $n>1$ there exists a rational function $u_{n} \in K(X)$, which is regular on $X \backslash\{p\}$, and for which $\nu_{p}\left(u_{n}\right)=-n$. Hint: Use the fact that $\ell\left(K_{X}-D\right)=0$, if $\operatorname{deg}(D)>\operatorname{deg}\left(K_{X}\right)=2 g(X)-2$.
(b) Show that the subfield $k\left(u_{2}, u_{3}\right)$ of $K(X)$ is equal to $K(X)$ and that there exists a polynomial $F(x, y)$ of degree 3 , such that $F\left(u_{2}, u_{3}\right)=0$. Hint: Apply Riemann-Roch to $\mathcal{L}(6 p)$. Prove that $\left[K(X): k\left(u_{2}, u_{3}\right)\right]=1$ using Theorem 1 of Lecture 24.
(c) Assume that $\operatorname{char}(k) \neq 2,3$. Show that every curve of genus 1 is isomorphic to a curve given by the equation

$$
y^{2}=x^{3}+A x+B
$$

where $\mathcal{L}(2 p)=\operatorname{span}_{k}\{1, x\}$ and $\mathcal{L}(3 p)=\operatorname{span}_{k}\{1, x, y\}$.

