The field k below is assumed algebraically closed.

1. (Shafarevich, Ch III, Sec. 1 Problem 3) Let X be the affine plane curve $V\left(x^{2}+y^{2}-1\right), f: X \rightarrow \mathbb{A}^{1}$ the projection $f(x, y)=x$, and D_{a} the prime divisor corresponding to the point in \mathbb{A}^{1} with coordinate a. Determine the inverse image divisor $f^{*}\left(D_{a}\right)$ in $\operatorname{Div}(X)$.
2. (Shafarevich, Ch III, Sec. 1 Problem 4) Let X be a smooth projective curve and $f \in K(X) \backslash\{0\}$ a rational function. Regarding f as a morphism $f: X \rightarrow \mathbb{P}^{1}$, prove that $(f)=f^{*}(D)$, where D is the divisor $0-\infty$ on \mathbb{P}^{1}.
3. (Shafarevich, Ch III, Sec. 1 Problem 5) Let X be a non-singular affine variety. Show that $C l(X)=0$, if and only if the ring $\Gamma(X)$ of regular functions is a unique factorization domain. Hint: Theorem 47 page 141 in Matsumura's Commutative Algebra states that a noetherian integral domain A is a unique factorization domain, if and only if every prime ideal of height ${ }^{1} 1$ in A is principal. You will also need to use the Lemma on page 5 of the Lecture 22 notes.
4. (Shafarevich, Ch III, Sec. 1 Problem 7) Compute $C l\left(\mathbb{P}^{n} \times \mathbb{A}^{n}\right)$ for $n>0$.
5. (Shafarevich, Ch III, Sec. 1 Problem 11) Let X be the projective plane curve $V\left(y^{2} z-x^{2}(z+x)\right)$. Note that X has a node at $q:=(0: 0: 1)$ and the strict transform of q via the blow-up $\varphi: \mathbb{P}^{1} \rightarrow X$ centered at q consists of two points q_{1} and q_{2} in \mathbb{P}^{1}. Show that every Cartier divisor on X is linearly equivalent to a Cartier divisor whose support does not contain the point q. Use this to describe $\operatorname{Pic}(X)$ as G / P, where $G=\operatorname{Div}\left(\mathbb{P}^{1} \backslash\left\{q_{1}, q_{2}\right\}\right)$ and P is the group of those principal divisors (f) for which f is regular at q_{1} and q_{2} and $f\left(q_{1}\right)=f\left(q_{2}\right) \neq 0$. Show that $\operatorname{Pic}^{0}(X)$ is isomorphic to the multiplicative group $k \backslash\{0\}$. Here $\operatorname{Pic}^{0}(X)$ is the kernel of the pullback from $\operatorname{Pic}(X)$ to its blow-up \mathbb{P}^{1}.
6. (Shafarevich, Ch III, Sec. 1 Problem 13) Let X be the quadric cone $V\left(z^{2}-x y\right) \subset \mathbb{A}^{3}$ and $\varphi: \mathbb{A}^{2} \rightarrow X$ be the morphism given by $\varphi(u, v)=\left(u^{2}, v^{2}, u v\right)$. We have the isomorphisms $\operatorname{Div}\left(\mathbb{A}^{2}\right) \cong \operatorname{Div}\left(\mathbb{A}^{2} \backslash\{(0,0)\}\right)$ and $\operatorname{Div}(X) \cong \operatorname{Div}(X \backslash\{(0,0,0)\})$ and the pullback $\varphi^{*}: \operatorname{Div}(X \backslash\{(0,0,0)\}) \rightarrow \operatorname{Div}\left(\mathbb{A}^{2} \backslash\{(0,0)\}\right)$ is well defined, since the target is non-singular and φ is dominant. Hence, we get the well defined pullback homomorphism $\varphi^{*}: \operatorname{Div}(X) \rightarrow \operatorname{Div}\left(\mathbb{A}^{2}\right)$.
(a) Show that a divisor $D=(F) \in \operatorname{Div}\left(\mathbb{A}^{2}\right)$ belongs to the image $\varphi^{*}(\operatorname{Div}(X))$, if and only if $F(-u,-v)= \pm F(u, v)$, i.e., F is either an even or an odd function.
(b) Let $P(X) \subset \operatorname{Div}(X)$ be the subgroup of principal divisors. Show that $\varphi^{*}(P(X))$ consists of principal divisors of even functions.
(c) Show that $C l(X)$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.

[^0]7. (Shafarevich, Ch III, Sec. 1 Problem 16) Show that every automorphism of \mathbb{P}^{n} carries divisors of hyperplanes (prime divisors of degree 1) into each other. Hint: The class of hyperplanes in $C l\left(\mathbb{P}^{n}\right)$ is the effective generating class.
8. (Shafarevich, Ch III, Sec. 1 Problem 17) Show that every automorphism of \mathbb{P}^{n} is a linear projective transformation, i.e., an element of $P G L(n+1)$. Hint: Use problem 7.
9. (a) Let X be a variety such that its singular locus $X_{\text {sing }}$ has codimension ≥ 2 in X. Let Z be a closed subset and set $U:=X \backslash Z$.
i. There is a surjective homomorphism $\rho: C l(X) \rightarrow C l(U)$ defined by
$$
\sum n_{i} Y_{i} \mapsto \sum n_{i}\left(Y_{i} \cap U\right)
$$
where we omit those $Y_{i} \cap U$ which are empty.
ii. If the co-dimension of Z in X is ≥ 2, then the homomorphism ρ is an isomorphism.
iii. If Z is an irreducible subset of co-dimension 1 , then there is a right exact sequence
$$
\mathbb{Z} \rightarrow C l(X) \rightarrow C l(U) \rightarrow 0
$$
where the first homomorphism maps 1 to $1 \cdot Z$.
(b) If Y is an irreducible hypersurface of degree d in $\mathbb{P}^{n}, n \geq 2$, then $C l\left(\mathbb{P}^{n} \backslash Y\right)=$ $\mathbb{Z} / d \mathbb{Z}$.
10. (Shafarevich, Ch III, Sec. 1 Problem 18) Let Y be a non-singular variety of dimension $n \geq 2$ and $\sigma: X \rightarrow Y$ the blow-up centered at a point $y \in Y$.
(a) Let $\iota: E \rightarrow X$ be the inclusion of the exceptional divisor. Recall that $E \cong$ $\mathbb{P}\left(T_{y} Y\right) \cong \mathbb{P}^{n-1}$. Denote by $[E] \in C l(X)$ the class of the prime divisor E. Show that $\iota^{*}[E]$ is the generator of degree -1 of $C l(E) \cong C l\left(\mathbb{P}^{n-1}\right)$. Hint: Let $Z \subset Y$ be an irreducible subvariety of codimention 1 , such that y is a nonsingular point of Z. Denote by $[Z] \in C l(Y)$ the class of Z and by $[\widetilde{Z}] \in C l(X)$ the class of the strict transport of Z. Show that $\sigma^{*}([Z])=[E]+[\widetilde{Z}], \iota^{*}[\tilde{Z}]$ is a generator of $C l(E)$, and that $\iota^{*}[E]=-\iota^{*}[\widetilde{Z}]$. Theorem 1 of Lecture 23 would be useful.
(b) Show that $C l(X)=C l(Y) \oplus \mathbb{Z}$.

[^0]: ${ }^{1}$ The height of a prime ideal P is the maximal length h of a sequence $P_{0} \subset P_{1} \subset \cdots \subset P_{h}=P$ of prime ideals and strict inclusions. Note that $P_{0}=(0)$ if A is a domain.

