The field k below is assumed algebraically closed.

- 1. (Shafarevich, Ch III, Sec. 1 Problem 3) Let X be the affine plane curve $V(x^2 + y^2 1), f: X \to \mathbb{A}^1$ the projection f(x, y) = x, and D_a the prime divisor corresponding to the point in \mathbb{A}^1 with coordinate a. Determine the inverse image divisor $f^*(D_a)$ in Div(X).
- 2. (Shafarevich, Ch III, Sec. 1 Problem 4) Let X be a smooth projective curve and $f \in K(X) \setminus \{0\}$ a rational function. Regarding f as a morphism $f : X \to \mathbb{P}^1$, prove that $(f) = f^*(D)$, where D is the divisor 0∞ on \mathbb{P}^1 .
- 3. (Shafarevich, Ch III, Sec. 1 Problem 5) Let X be a non-singular affine variety. Show that Cl(X) = 0, if and only if the ring $\Gamma(X)$ of regular functions is a unique factorization domain. Hint: Theorem 47 page 141 in Matsumura's *Commutative Algebra* states that a noetherian integral domain A is a unique factorization domain, if and only if every prime ideal of height¹ 1 in A is principal. You will also need to use the Lemma on page 5 of the Lecture 22 notes.
- 4. (Shafarevich, Ch III, Sec. 1 Problem 7) Compute $Cl(\mathbb{P}^n \times \mathbb{A}^n)$ for n > 0.
- 5. (Shafarevich, Ch III, Sec. 1 Problem 11) Let X be the projective plane curve $V(y^2z x^2(z + x))$. Note that X has a node at q := (0 : 0 : 1) and the strict transform of q via the blow-up $\varphi : \mathbb{P}^1 \to X$ centered at q consists of two points q_1 and q_2 in \mathbb{P}^1 . Show that every Cartier divisor on X is linearly equivalent to a Cartier divisor whose support does not contain the point q. Use this to describe $\operatorname{Pic}(X)$ as G/P, where $G = \operatorname{Div}(\mathbb{P}^1 \setminus \{q_1, q_2\})$ and P is the group of those principal divisors (f) for which f is regular at q_1 and q_2 and $f(q_1) = f(q_2) \neq 0$. Show that $\operatorname{Pic}^0(X)$ is isomorphic to the multiplicative group $k \setminus \{0\}$. Here $\operatorname{Pic}^0(X)$ is the kernel of the pullback from $\operatorname{Pic}(X)$ to its blow-up \mathbb{P}^1 .
- 6. (Shafarevich, Ch III, Sec. 1 Problem 13) Let X be the quadric cone $V(z^2 xy) \subset \mathbb{A}^3$ and $\varphi : \mathbb{A}^2 \to X$ be the morphism given by $\varphi(u, v) = (u^2, v^2, uv)$. We have the isomorphisms $\operatorname{Div}(\mathbb{A}^2) \cong \operatorname{Div}(\mathbb{A}^2 \setminus \{(0,0)\})$ and $\operatorname{Div}(X) \cong \operatorname{Div}(X \setminus \{(0,0,0)\})$ and the pullback $\varphi^* : \operatorname{Div}(X \setminus \{(0,0,0)\}) \to \operatorname{Div}(\mathbb{A}^2 \setminus \{(0,0)\})$ is well defined, since the target is non-singular and φ is dominant. Hence, we get the well defined pullback homomorphism $\varphi^* : \operatorname{Div}(X) \to \operatorname{Div}(\mathbb{A}^2)$.
 - (a) Show that a divisor $D = (F) \in \text{Div}(\mathbb{A}^2)$ belongs to the image $\varphi^*(\text{Div}(X))$, if and only if $F(-u, -v) = \pm F(u, v)$, i.e., F is either an even or an odd function.
 - (b) Let $P(X) \subset \text{Div}(X)$ be the subgroup of principal divisors. Show that $\varphi^*(P(X))$ consists of principal divisors of even functions.
 - (c) Show that Cl(X) is isomorphic to $\mathbb{Z}/2\mathbb{Z}$.

¹The height of a prime ideal P is the maximal length h of a sequence $P_0 \subset P_1 \subset \cdots \subset P_h = P$ of prime ideals and strict inclusions. Note that $P_0 = (0)$ if A is a domain.

- 7. (Shafarevich, Ch III, Sec. 1 Problem 16) Show that every automorphism of \mathbb{P}^n carries divisors of hyperplanes (prime divisors of degree 1) into each other. Hint: The class of hyperplanes in $Cl(\mathbb{P}^n)$ is the effective generating class.
- 8. (Shafarevich, Ch III, Sec. 1 Problem 17) Show that every automorphism of \mathbb{P}^n is a linear projective transformation, i.e., an element of PGL(n+1). Hint: Use problem 7.
- 9. (a) Let X be a variety such that its singular locus X_{sing} has codimension ≥ 2 in X. Let Z be a closed subset and set $U := X \setminus Z$.
 - i. There is a surjective homomorphism $\rho: Cl(X) \to Cl(U)$ defined by

$$\sum n_i Y_i \mapsto \sum n_i (Y_i \cap U),$$

where we omit those $Y_i \cap U$ which are empty.

- ii. If the co-dimension of Z in X is ≥ 2 , then the homomorphism ρ is an isomorphism.
- iii. If Z is an irreducible subset of co-dimension 1, then there is a right exact sequence

$$\mathbb{Z} \to Cl(X) \to Cl(U) \to 0,$$

where the first homomorphism maps 1 to $1 \cdot Z$.

- (b) If Y is an irreducible hypersurface of degree d in \mathbb{P}^n , $n \ge 2$, then $Cl(\mathbb{P}^n \setminus Y) = \mathbb{Z}/d\mathbb{Z}$.
- 10. (Shafarevich, Ch III, Sec. 1 Problem 18) Let Y be a non-singular variety of dimension $n \ge 2$ and $\sigma : X \to Y$ the blow-up centered at a point $y \in Y$.
 - (a) Let $\iota : E \to X$ be the inclusion of the exceptional divisor. Recall that $E \cong \mathbb{P}(T_yY) \cong \mathbb{P}^{n-1}$. Denote by $[E] \in Cl(X)$ the class of the prime divisor E. Show that $\iota^*[E]$ is the generator of degree -1 of $Cl(E) \cong Cl(\mathbb{P}^{n-1})$. Hint: Let $Z \subset Y$ be an irreducible subvariety of codimention 1, such that y is a nonsingular point of Z. Denote by $[Z] \in Cl(Y)$ the class of Z and by $[\widetilde{Z}] \in Cl(X)$ the class of the strict transport of Z. Show that $\sigma^*([Z]) = [E] + [\widetilde{Z}], \, \iota^*[\widetilde{Z}]$ is a generator of Cl(E), and that $\iota^*[E] = -\iota^*[\widetilde{Z}]$. Theorem 1 of Lecture 23 would be useful.
 - (b) Show that $Cl(X) = Cl(Y) \oplus \mathbb{Z}$.