Algebraic Geometry Math 797 Homework Assignment 7, Fall 2021

The field k below is assumed algebraically closed.

1. (Shafarevich Ch. II Sec. 1 Q2) Let X be the affine plane curve $V\left(y^{2}-x^{3}\right)$. The morphism $\varphi: \mathbb{A}^{1} \rightarrow X$, given by $\varphi(t)=\left(t^{2}, t^{3}\right)$, determines a birational isomorphism of the curve X and \mathbb{A}^{1}. What rational functions of t correspond to functions of the local ring \mathcal{O}_{p} of the point $p=(0,0)$ of X ?
2. (a) (Shafarevich Ch. II Sec. 1 Q9) Show that a hypersurface of degree ${ }^{1} 2$ having a singular point p is a cone (a union of lines passing through p). Hint: Use Equation (1).
(b) (Shafarevich Ch. II Sec. 1 Q10) Show that if a hypersurface of degree 3 has two singular points, then the line containing them lies on the hypersurface.
(c) (Shafarevich Ch. II Sec. 1 Q11) Show that if a plane curve of degree 3 has 3 singular points, then it is the union of three lines.
3. (Shafarevich Ch. II Sec. 1 Q17) Assume that the ground field k has characteristic 0 . Let d and n be integers satisfying $d \geq 2$ and $n \geq 2$. Let S_{d} be the graded summand of $k\left[x_{0}, \ldots, x_{n}\right]$ of degree d. Show that points in $\mathbb{P}\left(S_{d}\right)$ corresponding to hypersurfaces in \mathbb{P}^{n} having a singular point form an irreducible hypersurface in $\mathbb{P}\left(S_{d}\right)$. Hint: Use the discussion about the universal hypersurface \mathcal{X} in Lecture 17. Let $\mathcal{Y} \subset \mathcal{X}$ be the subset of points (x, F), such that x is a singular point of $V(F) \subset \mathbb{P}^{n}$. First show that \mathcal{Y} is a Zariski closed subset. Next show that \mathcal{Y} is irreducible by showing that the fibers of p_{1} are all projective subspaces of $\mathbb{P}\left(S_{d}\right)$ of the same dimension.

4. (Shafarevich Ch. II Sec. 3 Q1) Let X be a curve, $p \in X$ a non-singular point, and $m_{p} \subset \mathcal{O}_{p}$ the maximal ideal in the local ring at p. Let $t \in m_{p}$ be an element which image in m_{p} / m_{p}^{2} spans the latter. So $m_{p}=\left\{c t+g: c \in k, g \in m_{p}^{2}\right\}$. Show that every function $f \in \mathcal{O}_{p}$ can be represented uniquely in the form $f=u t^{n}$,

[^0]where $n \geq 0$ and u is an invertible element of \mathcal{O}_{p}. Deduce that \mathcal{O}_{p} is a unique factorization domain. Hint: Use Nakayama's Lemma.
5. (Shafarevich Ch. II Sec. 3 Q5) Let X be the cone $V\left(x^{2}+y^{2}-z^{2}\right) \subset \mathbb{A}^{3}$. Show that the line $L=V(x, y-z)$ does not have a single local equation in any neighborhood of the point $(0,0,0)$. Hint: Use Nakayama's Lemma.
6. (Hartshorne Exercise I.5.1) Locate the singular points of the following curves in \mathbb{A}^{2} (assume that the characteristic of k is not equal to 2). a) $x^{2}=x^{4}+y^{4}, \mathrm{~b}$) $x y=x^{6}+y^{6}$, c) $x^{3}=y^{2}+x^{4}+y^{4}$, d) $x^{2} y+x y^{2}=x^{4}+y^{4}$. Sketch these curves when $k=\mathbb{R}$. The figures from Hartshorne are included below.
7. (Hartshorne Exercise I.5.2) Locate the singular points and describe the singularities of the following surfaces in \mathbb{A}^{2}. a) $x y^{2}=z^{2}$, b) $x^{2}+y^{2}=z^{2}$, c) $x y+x^{3}+y^{3}=0$. The figures from Hartshorne are included below.
8. (Hartshorne Exercise I.5.3) Let $Y \subset \mathbb{A}^{2}$ be a curve defined by the equation $f(x, y)=$ 0 . Let $P=(a, b)$ be a point of \mathbb{A}^{2}. Make a linear change of coordinates so that P becomes the point $(0,0)$. Then write f as a sum $f=f_{0}+f_{1}+\cdots+f_{d}$, where f_{i} is a homogeneous polynomial of degree i in x and y. The multiplicity of P on Y, denoted $\mu_{P}(Y)$, is the least r, such that $f_{r} \neq 0$. (Note that $P \in Y \Leftrightarrow \mu_{p}(Y)>0$.) The linear factors of f_{r} are called the tangent directions at P.
(a) Show that $\mu_{P}(Y)=1 \Leftrightarrow P$ is a non-singular point of Y.
(b) Find the multiplicity of each of the singular points in Question 6 above.
9. (Hartshorne, Problem I.5.6) Blowing up curve singularities). Let $Y=V(f)$ be an affine plane curve and $P=(a, b)$ a point of \mathbb{A}^{2}. Write $f=f_{\mu}+f_{\mu+1}+\ldots+f_{d}$, where f_{i} is a homogeneous polynomial of degree i in $(x-a)$ and $(y-b)$, and $f_{\mu} \neq 0$. Recall that the multiplicity of P on Y is μ. If $\mu>0$, the tangent directions are cut out by the linear factors of f_{μ}. A double point is a point of multiplicity 2 . We define a node (also called an ordinary double point) to be a double point with distinct tangent directions. Denote by $\varphi: \widetilde{Y} \rightarrow Y$ the morphism of blowing-up $P \in Y$.
(a) Let Y be the cuspidal curve $V\left(y^{2}-x^{3}\right)$ or the nodal curve $V\left(x^{6}+y^{6}-x y\right)$ from Question 6. Show that the curve \widetilde{Y}, obtained by blowing up Y at the point $O:=(0,0)$, is non-singular. Note: The term cusp is defined in Exercise I.5.14 part d in Hartshorne. It is characterised also as a double point planar singularity $p \in Y$, such that $\varphi^{-1}(P)$ consists of a single point $\widetilde{P} \in \widetilde{Y}$ and \widetilde{Y} is non-singular at \widetilde{P}.
(b) Let P be a node on a plane curve Y. Show that $\varphi^{-1}(P)$ consists of two distinct non-singular points on \widetilde{Y}. We say that "blowing-up P resolves the singularity at P ".
(c) Let $P=(0,0)$ be the tacnode of $Y=V\left(x^{4}+y^{4}-x^{2}\right)$ from Question 6. Show that $\varphi^{-1}(P)$ is a node. Using 9 b we see that the tacnode can be resolved by two succesive blowing-up.
(d) Let Y be the plane curve $V\left(y^{3}-x^{5}\right)$, which has a higher order cusp at O. Show that O is a triple point; that blowing-up O gives rise to a double point, and that one further blowing-up resolves the singularity.
10. (Hartshorne, Problem I.5.7) Let $Y \subset \mathbb{P}^{2}$ be a non-singular plane curve of degree >1, defined by the equation $f(x, y, z)=0$. Let $X \subset \mathbb{A}^{3}$ be the affine variety defined by f (this is the cone over Y). Let $P=(0,0,0)$ be the vertex of the cone and $\varphi: \widetilde{X} \rightarrow X$ the blowing-up of X at P.
(a) Show that P is the only singular point of X.
(b) Show that \widetilde{X} is non-singular (cover it with open affine subsets).
(c) Show that $\varphi^{-1}(P)$ is isomorphic to Y.
11. (Shafarevich Ch. II Sec. 5 Q4) Let $\varphi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{4}$ be the rational map given by the
 isomorphism and its inverse $\overline{\varphi\left(\mathbb{P}^{2}\right)} \rightarrow \mathbb{P}^{2}$ is the blow-up at $(1: 0: 0)$.

[^0]: ${ }^{1} \mathrm{~A}$ hypersurface in \mathbb{A}^{n} or \mathbb{P}^{n} is a Zariski closed subset of the form $X=V(F)$ and the degree of X is that of F. If X is a hypersurface in \mathbb{P}^{n} and L is a line in \mathbb{P}^{n} which is not contained in X, then

 $$
 \begin{equation*}
 \operatorname{deg}(X)=\sum_{p \in L \cap X} m_{p}(L, X) \tag{1}
 \end{equation*}
 $$

 where $m_{p}(X, L)$ is the multiplicity of p as an intersection point, by the definition of $m_{p}(L, X)$ given in Lecture 18.

