
Algebraic Geometry Math 797 Homework Assignment 6, Fall 2021

The field k below is assumed algebraically closed.

1. (Shafarevich, Ch. I Sec. 6 problems 6, 7, 8) Let X ⊂ A3 be an algebraic curve (an
irreducible affine algebraic variety of dimension 1). In parts 1a and 1b assume that
X is not a line. Let x, y, z be the coordinates on A3.

(a) Show that there exists a non-zero polynomial f(x, y) that vanishes at all points
of X. Show that all such polynomials form a principal ideal (g(x, y)) and that
the curve V (g) is the closure of the projection of X to the (x, y)-plane parallel
to the z-axis. Provide a careful justification citing the precise theorems needed
to show that the closure of the projection of X is a one dimensional variety.

(b) Let h(x, y, z) = g0(x, y)zn + · · · + gn(x, y) ∈ k[x, y][z] be a polynomial of
smallest possible degree in z in the ideal I(X), which is not divisible by g.
Show that every f ∈ I(X) of degree m in z can be written in the form

f · gm0 = h ·Q+ v,

with v ∈ k[x, y, z] divisible by g (and degz(v) < degz(h)). Deduce that V (g, h)
is an algebraic subset of dimension 1 which is itself contained in the union of
X and finitely many lines parallel to the z-axis given by V (g, g0),

X ⊂ V (g, h) ⊂ X ∪ V (g, g0).

Now show that every irreducible component of V (g, h) is 1-dimensional, and
so V (g, h) = X ∪ L1 ∪ · · · ∪ Lr, where the lines {L1, . . . , Lr} are a subset of
those in V (g, g0).

(c) Show that every curve X in A3 can be determined by three equations. Hint:
Let Yj be the union of X and all the Li except Lj. Note that Yj∩Lj = X∩Lj.
Use the fact that the ring Γ(Lj) of regular functions on Lj is a principal
ideal domain (∼= k[t]) to show that there exists an element qj ∈ I(Yj) ⊂
k[x, y, z], such that V (qj) ∩ Lj = X ∩ Lj. Next show that q :=

∑r
j=1 qj

satisfies V (g, h, q) = X.

2. Let gl(n, k) be the variety of n × n matrices with entries in the field k, and let
char : gl(n, k) → An be the morphism, which takes a matrix A to the coefficients
(a1, . . . , an) of its characteristic polynomial det(A−xI) = (−1)nxn+a1x

n−1 + · · ·+
an. Recall that the morphism char is surjective, since the companion matrix of a
monic polynomial f(x) has characteristic polynomial f(x).

(a) Given A ∈ gl(n, k), denote by ϕA : GL(n, k)→ gl(n, k) the morphism ϕA(g) =
gAg−1. (The formula for g−1 via the adjoint matrix shows that ϕA is indeed a
morphism of affine varieties). Show that the dimension of the closure Im(ϕA)
is n2 − dim(C(A)), where C(A) := {g : gAg−1 = A} is the centralizer of A.
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(b) Assume that A is nilpotent. Show that dim(C(A)) ≥ n, and that equality
holds if and only if rank(A) = n − 1. Hint: Consider the Jordan canonical
form of A.

(c) Show that the fiber char−1(0) is irreducible of dimension n2 − n. Hint: Con-
sider Theorem 6 in Lecture 17.

(d) Prove that all the fibers of char are of pure1 dimension n2 − n. Hint: Use
the k∗-equivariance of char with respect to the standard k∗-action on gl(n, k),
the k∗-action λ(a1, . . . , an) = (λa1, . . . , λ

nan) on An, and the Upper-Semi-
Continuity Theorem for fiber dimension (Lecture 17) to reduce the question
to the nilpotent case.

Remark: It is not hard to show that in fact all fibers of char are irreducible.
Indeed, the Jordan canonical form theorem shows first that each fiber is the union
of finitely many GL(n, k) orbits, each of which is irreducible, and precisely one of
them is (n2 − n)-dimensional.

3. Construction of the Grasmannian variety G(r, n): Let V be an n-dimensional vector

space over k and
r
∧ V its exterior product. Recall that dim

(
r
∧ V

)
=

(
n
r

)
. If

{e1, . . . , en} is a basis for V , then
r
∧ V has the basis

{ei1 ∧ · · · ∧ eir : where i1 < · · · < ir and 1 ≤ ij ≤ n}. (1)

Let G(r, n) be the set of r dimensional subspaces of V . Consider the set theoretic
map

[•] : G(r, n) −→ P
(
r
∧ V

)
∼= P

 n
r

−1

sending an r-dimensional subspaceW of V to the point [W ] ∈ P
(
r
∧ V

)
, correspond-

ing to the line
r
∧ W in

r
∧ V . The basis (1) introduces homogeneous coordinates

on P
(
r
∧ V

)
, called Plücker coordinates. The Plücker coordinates of [W ] can be

computed in terms of a basis {f1, . . . , fr} of W as the coefficients on the right hand
side of the following equation

f1 ∧ · · · ∧ fr =
∑

1≤i1<···<ir≤n

p[i1, . . . , ir]ei1 ∧ · · · ∧ eir .

Note that p[i1, . . . , ir] is an r × r minor of the matrix, whose columns are the

coordinate vectors of f1, . . . , fr in the chosen basis for V . A non-zero vector in
r
∧ V

is called decomposeable, if it is of the form f1 ∧ · · · ∧ fr, for some r independent

vectors in V . Denote by D(r, n) ⊂ P
(
r
∧ V

)
the subset of all lines spanned by

decomposable vectors. Clearly D(r, n) is equal to the image of [•].
1An algebraic set has pure dimension d if all its irreducible components are of dimension d.
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(a) Let t ∈
r
∧ V be a non-zero vector and ϕt : V →

r+1
∧ V the linear homomor-

phism sending x ∈ V to t ∧ x. Prove that t is decomposable, if and only if
dim ker(ϕt) ≥ r. Hint: If dim ker(ϕt) ≥ r, we may choose the basis for V so
that ei ∈ ker(ϕt), for 1 ≤ i ≤ r.

(b) Prove that the map [•] : G(r, n) → D(r, n) is bijective. We identify the two
sets from now on and denote both by G(r, n).

(c) Prove that G(r, n) is a Zariski closed subset of P
(
r
∧ V

)
. Hint: Use part 3a.

(d) Let L0 := span{e1, . . . , er} and consider the map q : GL(n, k)→ G(r, n) given
by T 7→ T (L0). Show that q is a surjective map and a morphism. Hint:
Explicitly describe the Plücker coordinates of q(T ) in terms of the first r
columns of the invertible matrix T .

(e) Prove that G(r, n) is an irreducible projective variety of dimension r(n− r).

(f) Let U[i1,...,ir] ⊂ P
(
r
∧ V

)
be the open subset where the Plücker coordinate

p[i1, . . . , ir] does not vanish. Prove that G(r, n) ∩ U[i1,...,ir] is isomorphic to
Ar(n−r). Hint: Let A ⊂ GL(n) be the subgroup consisting of matrices of the

form

(
Ir 0
* In−r

)
, where Ir is the r×r identity matrix. Show that q restricts

as an isomorphism from A onto G(r, n) ∩ U[1,...,r]. In order to show that the
inverse of the restriction is a morphism you will need to show that if C is an
(n − r) × r matrix then the (i, j) entry cij of C can be expressed, up to an

explicit sign, as one of the r × r minors of the n× r matrix

(
Ir
C

)
.

4. Let V be a (2k + ε)-dimensional vector space, where ε = 0 or 1, and t ∈
2
∧ V . A

standard fact from linear algebra states that there exists a basis {e1, . . . , e2k+ε} of
V , with respect to which t =

∑k
i=1 cie2i−1 ∧ e2i. Hence, anti-symmetric bilinear

forms have even rank. Let V be a 2k-dimensional vector space. The polynomial

map P :
2
∧ V →

2k
∧ V , given by t 7→ tk, is an element of Symk(

2
∧ V )∗⊗

2k
∧ V . More

explicitly, if we choose coordinates on V , then P is a polynomial of degree k in the

coordinates of
2
∧ V , called the Pffafian.2

(a) Show that a vector t ∈
2
∧ V is decomposable, if and only if t ∧ t = 0 ∈

4
∧ V .

(b) Prove that G(2, 4) is a quadric hypersurface in P5 and find its homogeneous
quadratic equation in the Plücker coordinates.

2Given an element t ∈
2
∧ V , denote by T : V ∗ → V the anti-self-dual linear transformation induced

by t. Consider the map det :
2
∧ V → (

2k
∧ V )⊗2 sending t to det(T ) :=

2k
∧ T . Then det belongs to

Sym2k(
2
∧ V )∗ ⊗ (

2k
∧ V )⊗2, i.e., det is a polynomial of degree 2k in the coordinates of

2
∧ V . It is easy to

show, using the GL(V )-invariance of both, that the determinant is equal to a universal non-zero constant
times the square of the Pffafian.
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(c) Assume char(k) 6= 2. Let Q(x0, . . . , x5) be a quadratic polynomial with a
non-degenerate symmetric bilinear form. Prove that the quadric hypersurface
V (Q) in P5 is isomorphic to G(2, 4). Hint: See problem 7 in Homework 3.

5. (Based on Shafarevich, Ch I., Sec 6.4. Feel free to consult the text, though you
should be able to work it out on your own.) Assume now that V is n+1 dimensional
so that PV is isomorphic to Pn. Choose homogeneous coordinates on PV , let
S = k[x0, . . . , xn] be the homogeneous coordinate ring of PV , and let Sd be its
graded summand of degree d. Set H(d, n) := PSd. A point in H(d, n) parametrizes
a hypersurface of degree d in Pn. Let

I(r, n, d) ⊂ H(d, n)×G(r + 1, n+ 1)

be the incidence subset, consisting of pairs (X,W ), such that the r-dimensional
linear subspace PW of Pn is contained in the hypersurface X. One easily checks
that I(r, n, d) is a Zariski closed subset of H(d, n)×G(r + 1, n+ 1).

(a) Show that the projection p2 : I(r, n, d)→ G(r + 1, n+ 1) is surjective and its
fiber over W ∈ G(r + 1, n + 1) is a linear subspace of H(d, n) of dimension(
n+ d
d

)
−
(
r + d
d

)
− 1. Hint: Identify Sd with SymdV ∗ and consider the

natural restriction homomorphism SymdV ∗ → SymdW ∗.

(b) Prove that I(r, n, d) is an irreducible variety of dimension

(r + 1)(n− r) +

(
n+ d
d

)
−
(
r + d
d

)
− 1.

Hint: Consider a theorem in Lecture 17.

(c) Prove that the image of the first projection p1 : I(r, n, d)→ H(d, n) is a closed
subvariety of H(d, n). Hint: A one line argument!

(d) Assume that (n − r)(r + 1) <

(
r + d
d

)
. Prove that p1(I(r, n, d)) is a proper

subset of H(d, n). Conclude that for d ≥ 4, there is a dense open subset
H′(d, 3) in H(d, 3), such that for X ∈ H′(d, 3), the corresponding surface X
of degree d in P3 does not contain any line.

(e) Show that every cubic surface in P3 contains a line. Hint: Set n = 3, r = 1,
and d = 3 and note that dim I(1, 3, 3) = dimH(3, 3). Show first that the
(singular) cubic x0x1x2 − x33 contains only 3 lines.

(f) Find 27 lines on the Fermat cubic surface V (x30 + x31 + x32 + x33) ⊂ P3.

Note: It can be proven that over the open subset of H(3, 3), where X is smooth,
the fiber p−11 (X) consists of 27 points; representing 27 lines on X.
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