Algebraic Geometry Homework Assignment 3, Spring 2021

The field k below is assumed algebraically closed.
(1) (Hartshorne, Exercise I.3.2, two examples, that a morphism, whose underlying map on the topological spaces is a homeomorphism, need not be an isomorphism).
(a) Let $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ be defined by $t \mapsto\left(t^{2}, t^{3}\right)$. Show that φ defines a morphism and a homeomorphism (bijective) from \mathbb{A}^{1} onto $V\left(y^{2}-x^{3}\right)$, but that φ is not an isomorphism.
(b) Let the characteristic of k be a prime $p>0$, and define a map $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ by $t \mapsto t^{p}$. Show that the morphism φ is a homeomorphism, but not an isomorphism. This is called the Frobenius morphism.
(2) (Shafarevich, Problem I.2.7) Show that the hyperbola $V(x y-1) \subset \mathbb{A}^{2}$ is not isomorphic to \mathbb{A}^{1}.
(3) (Shafarevich, Exercise I.2.8) Consider the image $S:=f\left(\mathbb{A}^{2}\right)$ of the morphism $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ given by $f(x, y)=(x, x y)$. Is S open in \mathbb{A}^{2} ? Is it dense? Is it closed?
(4) (Shafarevich, Exercise I.2.10) Show that all automorphisms of \mathbb{A}^{1} (isomorphisms from \mathbb{A}^{1} onto itself) are of the form $f(x)=a x+b, a \neq 0$.
(5) (Shafarevich, Exercise I.2.11) Let $P(x)$ be an arbitrary polynomial in x. Show that the map $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$, given by $f(x, y)=(x, y+P(x))$ is an automorphism of \mathbb{A}^{2}.
(6) (Hartshorne, Exercise I.3.6, an example of a quasi-affine variety, which is not affine). Show that $X:=\mathbb{A}^{2} \backslash\{(0,0)\}$ is not affine. Hint: Show that $\Gamma(X) \cong k[x, y]$ and use the equivalence between the categories of affine varieties and that of finitely generated k-algebras which are integral domains.
(7) The following problem was touched upon at the end of Lecture 4. Assume that the characteristic $\operatorname{char}(k)$ is different from 2. Let $f \in k\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous polynomial of degree 2. By the theory of symmetric bilinear forms, there is a linear change of variables, which brings f to the form $x_{0}^{2}+\cdots+x_{k}^{2}$, for some $0 \leq k \leq n$ (see Hoffman and Kunze, Linear Algebra, for example).
(a) Show that f is irreducible, if and only if $k \geq 2$.
(b) Show that after a linear change of coordinates, every plane conic (i.e., $V(f) \subset$ \mathbb{P}^{2}, where f is irreducible, of degree 2 , and $n=2$) can be realized as the image $V\left(x z-y^{2}\right)$ of the 2-uple embedding $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$, given by $(s, t) \mapsto\left(s^{2}, s t, t^{2}\right)$ (see Homework 2 Problem 7).
(c) Construct an embedding $e: P G L(2) \rightarrow P G L(3)$, obtaining an action of $P G L(2)$ on \mathbb{P}^{2}, with respect to which the map ϕ is $P G L(2)$-equivariant, i.e., such that $\phi(g(s, t))=e(g) \phi(s, t)$, for all $(s, t) \in \mathbb{P}^{1}$.
(d) Let $C:=V(f) \subset \mathbb{P}^{2}$ be an irreducible conic and $P=\left(a_{0}, a_{1}, a_{2}\right)$ a point in C. Let f_{x} be the partial $\frac{\partial f}{\partial x}$. Show that the line

$$
f_{x}(P) x+f_{y}(P) y+f_{z}(P) z=0
$$

intersects C at the point P and at no other point, and that any other line in \mathbb{P}^{2} through P intersects C at precisely one additional point. Hint: $P G L(2)$ acts (triply) transitively on \mathbb{P}^{1}, so the statement reduces to the case $f(x, y, z)=$ $x z-y^{2}$ and $P=(1,0,0)$.
(8) (Hartshorne, Exercise I.3.11 modified) Let X be an affine variety, $P \in X$ a point, and $m_{P} \subset \Gamma(X)$ its maximal ideal. Show that there is a one-to-one correspondence between the prime ideals of $\Gamma(X)_{m_{p}}$ and closed subvarieties of X containing P. Conclude, in particular, that $\Gamma(X)_{m_{p}}$ has a unique maximal ideal.
(9) (Filling in the proof of a statement from Lecture 6 about the coordinate ring of principal affine subsets) Let R be a commutative ring with $1, f \in R \backslash\{0\}$, $S:=\left\{f^{n}: n \geq 0\right\}$, and $R_{f}:=S^{-1} R$.
(a) Set $A:=R[y] /(y f-1)$, where y is an indeterminate, and let $\phi: R \rightarrow A$ be the homomorphism $\phi(r)=r+(y f-1)$. Prove that $\phi(r)=0$, if and only if $r f^{n}=0$, for some $n \geq 0$. Hint for the "only if" direction: If $\phi(r)=0$, then there is a polynomial $g(y)=\sum_{i=0}^{n} c_{i} y^{i}$, such that $r=g(y)(y f-1)$. Use the latter equality to solve for the coefficients $c_{i} \in R$.
(b) Let $h: R_{f} \rightarrow A$ be the natural homomorphism, which is determined by the universal property of R_{f} and sends r / f^{n} to $\phi(r) y^{n}$. Prove that h is an isomorphism.
(10) (Shafarevich, Exercise I.4.14) Let X be an irreducible conic in \mathbb{P}^{2}. Show that the quasiprojective variety $\mathbb{P}^{2} \backslash X$ is affine. Hint: Use the fact the the 2-uple embedding $\rho_{2}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ from Q7 in HW2 (called the Veronese embedding in Shafarevich) is an isomorphism onto its image.

