The field k below is assumed algebraically closed.

1. (Hartshorne I.1.2, the affine twisted cubic curve revisited) Let $Y \subset \mathbb{A}^{3}$ be the set $\left\{\left(t, t^{2}, t^{3}\right): t \in k\right\}$. Find generators for $I(Y)$ and show that its affine coordinate ring $k[x, y, z] / I(Y)$ is isomorphic to a polynomial ring in one variable over k.
2. (Hartshorne I.1.3) Let Y be the algebraic set in \mathbb{A}^{3} defined by the two polynomials $x^{2}-y z$ and $x z-x$. Show that Y is the union of three irreducible components and find their prime ideals.
3. (Hartshorne I.1.4) Identify \mathbb{A}^{2} with $\mathbb{A}^{1} \times \mathbb{A}^{1}$ in the natural way. Show that the Zariski topology on \mathbb{A}^{2} is not the product topology of the Zariski topology on the two copies of \mathbb{A}^{1}.
4. (Hartshorne I.1.6) Any non-empty open subset of an irreducible topological space is dense and irreducible. If Y is a subset of a topological space X, which is irreducible in its induced topology, then the closure \bar{Y} is also irreducible.
5. (Mumford, section I. 2 Example B) Let $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ be the parametrization of the twisted cubic curve

$$
\phi(s, t)=\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right)
$$

and $\phi^{*}: k[x, y, z, w] \rightarrow k[s, t]$ the pullback homomorphism, $\phi^{*}(x)=s^{3}, \phi^{*}(y)=$ $s^{2} t, \phi^{*}(z)=s t^{2}, \phi^{*}(w)=t^{3}$. We have seen in class, that the image $C:=\phi\left(\mathbb{P}^{1}\right)$ is cut out by the homogeneous ideal $J:=\left(x z-y^{2}, y w-z^{2}, x w-y z\right)$. Conclude that $I(C)=\sqrt{J}$.
(a) Prove that $J=\operatorname{ker}\left(\phi^{*}\right)$. Conclude that J is a prime ideal and $I(C)=J$.

Hint: Reduce to the following statement. Given non-negative integers (a, b) and a polynomial $f \in \operatorname{ker}\left(\phi^{*}\right)$, which is a linear combination of monomials $M=x^{e_{x}} y^{e_{y}} z^{e_{z}} w^{e_{w}}$ with $\phi^{*}(M)=s^{a} t^{b}$, then f belongs to J. We may assume $a \geq b$, by interchanging the roles of s and t. Treat the cases $a>b$ and $a=b$ separately. If $a>b$, prove it by a double induction, on $\operatorname{deg}(f)$ and the degree of f as a polynomial in y with coefficients in $k[x, z, w]$. If $\operatorname{deg}_{y}(f) \leq 1$, show that x divides f and use the induction hypothesis (and the fact that J is prime). If $\operatorname{deg}_{y}(f) \geq 2$, use the element $x z-y^{2}$ of J to ${\operatorname{lower~} \operatorname{deg}_{y}(f) \text {. For }}^{2}$ the case $a=b$ you may need a triple induction.
(b) Prove that the projective coordinate rings $k[s, t]$ of \mathbb{P}^{1} and $k[x, y, z, w] / I(C)$, of the twisted cubic curve, are not isomorphic. (Contrast with the affine case in Question 1).
6. (Hartshorne I.2.9, projective closure of an affine variety) Let $\left(y_{1}, \ldots, y_{n}\right)$ be affine coordinates on $\mathbb{A}^{n},\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ homogeneous coordinates on \mathbb{P}^{n}, U_{0} the complement of the hyperplane $x_{0}=0$, and identify \mathbb{A}^{n} with U_{0} via the natural homeomorphism $\varphi_{0}: U_{0} \rightarrow \mathbb{A}^{n}$, so that the y_{i} coordinate of $\varphi\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is x_{i} / x_{0}.

Given a polynomial $g \in k\left[y_{1}, \ldots, y_{n}\right]$ of degree d, set

$$
\beta(g)=g\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) x_{0}^{d} .
$$

Let $Y \subset \mathbb{A}^{n}$ be an affine variety. The closure \bar{Y} of Y in \mathbb{P}^{n} is called its projective closure.
(a) Show that $I(\bar{Y})$ is the ideal generated by $\beta(I(Y))$.
(b) Let $Y:=V(g) \subset \mathbb{A}^{n}$ be a hypersurface associated to a non-constant squarefree polynomial g. Show that $I(\bar{Y})=(\beta(g))$. Hint: Show first that $I(Y)=$ (g).
(c) Let $Y \subset \mathbb{A}^{3}$ be the twisted cubic of question 1 . Use your answer to question 5 in order to show that if f_{1}, \ldots, f_{r} generate $I(Y)$, then $\beta\left(f_{1}\right), \ldots, \beta\left(f_{r}\right)$ do not necessarily generate $I(\bar{Y})$.
7. (Hartshorne I.2.12, The d-Uple embedding) For given $n, d>0$, let $M_{0}, M_{1}, \ldots, M_{N}$ be all the monomials of degree d in the variables x_{0}, \ldots, x_{n}. Note that $N=$ $\binom{n+d}{n}-1$. Let $\rho_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ be given by

$$
\rho_{d}(a)=\left(M_{0}(a), \ldots, M_{n}(a)\right),
$$

where $a=\left(a_{0}, \ldots, a_{n}\right)$ is the set of homogeneous coordinates of a point. This is called the d-Uple embedding of \mathbb{P}^{n} in \mathbb{P}^{N}. For example, if $n=1, d=2$, then $N=2$ and the image of the 2 -Uple embedding of \mathbb{P}^{1} is a conic in \mathbb{P}^{2}. Note also that if $M_{0}\left(x_{0}, \ldots, x_{n}\right)=x_{0}^{d}$, then ρ_{d} restricts to the affine open subset $\mathbb{P}_{x_{0}}^{n}$, where $x_{0} \neq 0$, as the map $\left(m_{1}, \ldots, m_{N}\right)$ from \mathbb{A}^{n} to \mathbb{A}^{N}, where the $m_{i}:=M_{i} / M_{0}$ run through all monomials in $x_{1} / x_{0}, \ldots, x_{n} / x_{0}$ of degree $\leq d$.
(a) Let $\theta: k\left[y_{0}, \ldots, y_{N}\right] \rightarrow k\left[x_{0}, \ldots, x_{n}\right]$ be the homomorphism given by $\theta\left(y_{i}\right)=$ M_{i}, and let J be the kernel of θ. Then J is a homogeneous prime ideal and so $V(J)$ is a projective variety in \mathbb{P}^{N}.
(b) Show that the image of ρ_{d} is contained in $V(J)$. Note: Hartshorne asks to prove that the image of ρ_{d} is equal to $V(J)$ and that ρ_{d} is a homeomorphism of \mathbb{P}^{n} onto the projective variety $V(J)$. This is combinatorially challenging. You need not prove it, but you should know it.
(c) Show that the twisted cubic curve of question 5 is equal to the 3-Uple embedding of \mathbb{P}^{1}, for suitable choice of coordinates.

